no code implementations • 7 May 2025 • Luis F. Gomez, Gonzalo Garrido-Lopez, Julian Fierrez, Aythami Morales, Ruben Tolosana, Javier Rueda, Enrique Navarro
The experimental findings suggest that human pose tracking approaches can be valuable resources for the biomechanical analysis of running.
no code implementations • 2 Dec 2024 • Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming Liu, Luis F. Gomez, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zhizhou Zhong, Yuge Huang, Yuxi Mi, Shouhong Ding, Shuigeng Zhou, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Zhihong Xiao, Evgeny Smirnov, Anton Pimenov, Aleksei Grigorev, Denis Timoshenko, Kaleb Mesfin Asfaw, Cheng Yaw Low, Hao liu, Chuyi Wang, Qing Zuo, Zhixiang He, Hatef Otroshi Shahreza, Anjith George, Alexander Unnervik, Parsa Rahimi, Sébastien Marcel, Pedro C. Neto, Marco Huber, Jan Niklas Kolf, Naser Damer, Fadi Boutros, Jaime S. Cardoso, Ana F. Sequeira, Andrea Atzori, Gianni Fenu, Mirko Marras, Vitomir Štruc, Jiang Yu, Zhangjie Li, Jichun Li, Weisong Zhao, Zhen Lei, Xiangyu Zhu, Xiao-Yu Zhang, Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti
In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.
1 code implementation • 16 Sep 2024 • Gonzalo Garrido-Lopez, Luis F. Gomez, Julian Fierrez, Aythami Morales, Ruben Tolosana, Javier Rueda, Enrique Navarro
This investigation first adapts two of these general trackers (MoveNet and CoTracker) for realistic biomechanical analysis and then evaluate them in comparison to manual tracking (with key points manually marked using the software Kinovea).
no code implementations • 10 Aug 2024 • Roberto Daza, Luis F. Gomez, Julian Fierrez, Aythami Morales, Ruben Tolosana, Javier Ortega-Garcia
Our method is particularly useful, among others, in e-learning applications, so we trained, evaluated, and compared our approach on the mEBAL2 database, a public multi-modal database acquired in an e-learning environment.
no code implementations • 3 Oct 2023 • Luis F. Gomez, Julian Fierrez, Aythami Morales, Mahdi Ghafourian, Ruben Tolosana, Imanol Solano, Alejandro Garcia, Francisco Zamora-Martinez
Presentation Attack Detection (PAD) is a crucial stage in facial recognition systems to avoid leakage of personal information or spoofing of identity to entities.
no code implementations • 22 Jan 2023 • Roberto Daza, Luis F. Gomez, Aythami Morales, Julian Fierrez, Ruben Tolosana, Ruth Cobos, Javier Ortega-Garcia
This work presents a new multimodal system for remote attention level estimation based on multimodal face analysis.
1 code implementation • 16 Nov 2022 • Roberto Daza, Aythami Morales, Ruben Tolosana, Luis F. Gomez, Julian Fierrez, Javier Ortega-Garcia
We present edBB-Demo, a demonstrator of an AI-powered research platform for student monitoring in remote education.
no code implementations • 3 Nov 2021 • Javier Hernandez-Ortega, Julian Fierrez, Luis F. Gomez, Aythami Morales, Jose Luis Gonzalez-de-Suso, Francisco Zamora-Martinez
In this paper we develop FaceQvec, a software component for estimating the conformity of facial images with each of the points contemplated in the ISO/IEC 19794-5, a quality standard that defines general quality guidelines for face images that would make them acceptable or unacceptable for use in official documents such as passports or ID cards.