no code implementations • 21 Apr 2023 • Oscar Li, James Harrison, Jascha Sohl-Dickstein, Virginia Smith, Luke Metz
Online evolution strategies have become an attractive alternative to automatic differentiation (AD) due to their ability to handle chaotic and black-box loss functions, while also allowing more frequent gradient updates than vanilla Evolution Strategies (ES).
no code implementations • 8 Dec 2022 • Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, Luke Metz
We further show that the capabilities of meta-trained algorithms are bottlenecked by the accessible state size (memory) determining the next prediction, unlike standard models which are thought to be bottlenecked by parameter count.
no code implementations • CVPR 2023 • Erik Gärtner, Luke Metz, Mykhaylo Andriluka, C. Daniel Freeman, Cristian Sminchisescu
We propose a new approach to learned optimization where we represent the computation of an optimizer's update step using a neural network.
1 code implementation • 17 Nov 2022 • Luke Metz, James Harrison, C. Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury, Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, Jascha Sohl-Dickstein
While deep learning models have replaced hand-designed features across many domains, these models are still trained with hand-designed optimizers.
no code implementations • 11 Oct 2022 • Chris Lu, Jakub Grudzien Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, Jakob Foerster
We refer to the immediate result as Learnt Policy Optimisation (LPO).
1 code implementation • 22 Sep 2022 • James Harrison, Luke Metz, Jascha Sohl-Dickstein
We apply the resulting learned optimizer to a variety of neural network training tasks, where it outperforms the current state of the art learned optimizer -- at matched optimizer computational overhead -- with regard to optimization performance and meta-training speed, and is capable of generalization to tasks far different from those it was meta-trained on.
1 code implementation • 9 Jun 2022 • Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramón Risco Delgado, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Timothy Telleen-Lawton, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, ZiRui Wang, Ziyi Wu
BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models.
1 code implementation • 22 Mar 2022 • Luke Metz, C. Daniel Freeman, James Harrison, Niru Maheswaranathan, Jascha Sohl-Dickstein
We further leverage our analysis to construct a learned optimizer that is both faster and more memory efficient than previous work.
2 code implementations • 27 Dec 2021 • Paul Vicol, Luke Metz, Jascha Sohl-Dickstein
Unrolled computation graphs arise in many scenarios, including training RNNs, tuning hyperparameters through unrolled optimization, and training learned optimizers.
no code implementations • 24 Dec 2021 • Jonathan Lorraine, Paul Vicol, Jack Parker-Holder, Tal Kachman, Luke Metz, Jakob Foerster
We generalize this idea to non-conservative, multi-agent gradient systems by proposing a method - denoted Generalized Ridge Rider (GRR) - for finding arbitrary bifurcation points.
1 code implementation • 10 Nov 2021 • Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, Tal Kachman
Differentiable programming techniques are widely used in the community and are responsible for the machine learning renaissance of the past several decades.
no code implementations • 20 Jul 2021 • Amil Merchant, Luke Metz, Sam Schoenholz, Ekin Dogus Cubuk
Optimization of non-convex loss surfaces containing many local minima remains a critical problem in a variety of domains, including operations research, informatics, and material design.
no code implementations • 14 Jan 2021 • Luke Metz, C. Daniel Freeman, Niru Maheswaranathan, Jascha Sohl-Dickstein
We show that a population of randomly initialized learned optimizers can be used to train themselves from scratch in an online fashion, without resorting to a hand designed optimizer in any part of the process.
1 code implementation • 1 Jan 2021 • Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C. Daniel Freeman, Ben Poole, Jascha Sohl-Dickstein
We present TaskSet, a dataset of tasks for use in training and evaluating optimizers.
no code implementations • 1 Jan 2021 • Luke Metz, Niru Maheswaranathan, C. Daniel Freeman, Ben Poole, Jascha Sohl-Dickstein
In this work we focus on general-purpose learned optimizers capable of training a wide variety of problems with no user-specified hyperparameters.
no code implementations • 7 Dec 2020 • Michael Laskin, Luke Metz, Seth Nabarro, Mark Saroufim, Badreddine Noune, Carlo Luschi, Jascha Sohl-Dickstein, Pieter Abbeel
Deep learning models trained on large data sets have been widely successful in both vision and language domains.
no code implementations • NeurIPS 2020 • Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster
In the era of ever decreasing loss functions, SGD and its various offspring have become the go-to optimization tool in machine learning and are a key component of the success of deep neural networks (DNNs).
no code implementations • NeurIPS 2021 • Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi Sun, Jascha Sohl-Dickstein
Learned optimizers are algorithms that can themselves be trained to solve optimization problems.
no code implementations • 23 Sep 2020 • Luke Metz, Niru Maheswaranathan, C. Daniel Freeman, Ben Poole, Jascha Sohl-Dickstein
In this work we focus on general-purpose learned optimizers capable of training a wide variety of problems with no user-specified hyperparameters.
no code implementations • 1 Jul 2020 • Geoffrey Roeder, Luke Metz, Diederik P. Kingma
Identifiability is a desirable property of a statistical model: it implies that the true model parameters may be estimated to any desired precision, given sufficient computational resources and data.
no code implementations • 27 Feb 2020 • Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C. Daniel Freeman, Ben Poole, Jascha Sohl-Dickstein
We present TaskSet, a dataset of tasks for use in training and evaluating optimizers.
no code implementations • ICLR 2019 • Ishaan Gulrajani, Colin Raffel, Luke Metz
For many evaluation metrics commonly used as benchmarks for unconditional image generation, trivially memorizing the training set attains a better score than models which are considered state-of-the-art; we consider this problematic.
2 code implementations • NeurIPS 2019 • C. Daniel Freeman, Luke Metz, David Ha
That useful models can arise out of the messy and slow optimization process of evolution suggests that forward-predictive modeling can arise as a side-effect of optimization under the right circumstances.
Model-based Reinforcement Learning
reinforcement-learning
+1
no code implementations • 20 Sep 2019 • Zhen Xu, Andrew M. Dai, Jonas Kemp, Luke Metz
The learning rate is one of the most important hyper-parameters for model training and generalization.
no code implementations • 8 Jun 2019 • Luke Metz, Niru Maheswaranathan, Jonathon Shlens, Jascha Sohl-Dickstein, Ekin D. Cubuk
State-of-the art vision models can achieve superhuman performance on image classification tasks when testing and training data come from the same distribution.
no code implementations • ICLR 2019 • Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, Jascha Sohl-Dickstein
This arises when an approximate gradient is easier to compute than the full gradient (e. g. in meta-learning or unrolled optimization), or when a true gradient is intractable and is replaced with a surrogate (e. g. in certain reinforcement learning applications or training networks with discrete variables).
no code implementations • ICLR 2019 • Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein
Here, our desired task (meta-objective) is the performance of the representation on semi-supervised classification, and we meta-learn an algorithm -- an unsupervised weight update rule -- that produces representations that perform well under this meta-objective.
no code implementations • ICLR 2019 • Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, Jascha Sohl-Dickstein
We demonstrate these results on problems where our learned optimizer trains convolutional networks in a fifth of the wall-clock time compared to tuned first-order methods, and with an improvement
1 code implementation • 24 Oct 2018 • Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, Jascha Sohl-Dickstein
Deep learning has shown that learned functions can dramatically outperform hand-designed functions on perceptual tasks.
1 code implementation • ICLR 2019 • Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, Jascha Sohl-Dickstein
We propose Guided Evolutionary Strategies, a method for optimally using surrogate gradient directions along with random search.
2 code implementations • ICLR 2019 • Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein
Specifically, we target semi-supervised classification performance, and we meta-learn an algorithm -- an unsupervised weight update rule -- that produces representations useful for this task.
2 code implementations • ICLR 2018 • Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg, Ian Goodfellow
We hypothesize that this counter intuitive behavior is a naturally occurring result of the high dimensional geometry of the data manifold.
no code implementations • ICLR 2018 • Luke Metz, Julian Ibarz, Navdeep Jaitly, James Davidson
Specifically, we show how Q-values and policies over continuous spaces can be modeled using a next step prediction model over discretized dimensions.
18 code implementations • 31 Mar 2017 • David Berthelot, Thomas Schumm, Luke Metz
We propose a new equilibrium enforcing method paired with a loss derived from the Wasserstein distance for training auto-encoder based Generative Adversarial Networks.
Ranked #63 on
Image Generation
on CIFAR-10
(Inception score metric)
9 code implementations • 7 Nov 2016 • Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein
We introduce a method to stabilize Generative Adversarial Networks (GANs) by defining the generator objective with respect to an unrolled optimization of the discriminator.
259 code implementations • 19 Nov 2015 • Alec Radford, Luke Metz, Soumith Chintala
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications.
Ranked #9 on
Image Clustering
on Tiny-ImageNet