no code implementations • 2 Mar 2023 • Yushun Tang, Ce Zhang, Heng Xu, Shuoshuo Chen, Jie Cheng, Luziwei Leng, Qinghai Guo, Zhihai He
We observe that the performance of this feed-forward Hebbian learning for fully test-time adaptation can be significantly improved by incorporating a feedback neuro-modulation layer.
1 code implementation • CVPR 2022 • Kaixuan Zhang, Kaiwei Che, JianGuo Zhang, Jie Cheng, Ziyang Zhang, Qinghai Guo, Luziwei Leng
Inspired by continuous dynamics of biological neuron models, we propose a novel encoding method for sparse events - continuous time convolution (CTC) - which learns to model the spatial feature of the data with intrinsic dynamics.
no code implementations • 19 Jun 2020 • Agnes Korcsak-Gorzo, Michael G. Müller, Andreas Baumbach, Luziwei Leng, Oliver Julien Breitwieser, Sacha J. van Albada, Walter Senn, Karlheinz Meier, Robert Legenstein, Mihai A. Petrovici
Being permanently confronted with an uncertain world, brains have faced evolutionary pressure to represent this uncertainty in order to respond appropriately.
no code implementations • 6 Jul 2018 • Akos F. Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baumbach, Dominik Dold, Alexander Kugele, Nico Gürtler, Luziwei Leng, Eric Müller, Christoph Koke, Mitja Kleider, Christian Mauch, Oliver Breitwieser, Maurice Güttler, Dan Husmann, Kai Husmann, Joscha Ilmberger, Andreas Hartel, Vitali Karasenko, Andreas Grübl, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici
The massively parallel nature of biological information processing plays an important role for its superiority to human-engineered computing devices.
no code implementations • 24 Sep 2017 • Luziwei Leng, Roman Martel, Oliver Breitwieser, Ilja Bytschok, Walter Senn, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici
In this work, we use networks of leaky integrate-and-fire neurons that are trained to perform both discriminative and generative tasks in their forward and backward information processing paths, respectively.