no code implementations • 20 Jun 2024 • Cyril Cappi, Noémie Cohen, Mélanie Ducoffe, Christophe Gabreau, Laurent Gardes, Adrien Gauffriau, Jean-Brice Ginestet, Franck Mamalet, Vincent Mussot, Claire Pagetti, David Vigouroux
This paper focuses on a Vision-based Landing task and presents the design and the validation of a dataset that would comply with the Operational Design Domain (ODD) of a Machine-Learning (ML) system.
no code implementations • 30 Jan 2024 • Noémie Cohen, Mélanie Ducoffe, Ryma Boumazouza, Christophe Gabreau, Claire Pagetti, Xavier Pucel, Audrey Galametz
We introduce a novel Interval Bound Propagation (IBP) approach for the formal verification of object detection models, specifically targeting the Intersection over Union (IoU) metric.
1 code implementation • 11 Jan 2024 • Mélanie Ducoffe, Guillaume Povéda, Audrey Galametz, Ryma Boumazouza, Marion-Cécile Martin, Julien Baris, Derk Daverschot, Eugene O'Higgins
Surrogate Neural Networks are nowadays routinely used in industry as substitutes for computationally demanding engineering simulations (e. g., in structural analysis).
no code implementations • 8 Jan 2024 • Yizhak Elboher, Raya Elsaleh, Omri Isac, Mélanie Ducoffe, Audrey Galametz, Guillaume Povéda, Ryma Boumazouza, Noémie Cohen, Guy Katz
As deep neural networks (DNNs) are becoming the prominent solution for many computational problems, the aviation industry seeks to explore their potential in alleviating pilot workload and in improving operational safety.
1 code implementation • 5 Apr 2023 • Mélanie Ducoffe, Maxime Carrere, Léo Féliers, Adrien Gauffriau, Vincent Mussot, Claire Pagetti, Thierry Sammour
As the interest in autonomous systems continues to grow, one of the major challenges is collecting sufficient and representative real-world data.
no code implementations • 26 Jan 2021 • Adrien Gauffriau, François Malgouyres, Mélanie Ducoffe
Experiments on real data show that the method makes it possible to use the surrogate function in embedded systems for which an underestimation is critical; when computing the reference function requires too many resources.
no code implementations • 14 May 2020 • Gabriel Rodriguez Garcia, Gabriel Michau, Mélanie Ducoffe, Jayant Sen Gupta, Olga Fink
Essential characteristics of time series, situated outside the time domain, are often difficult to capture with state-of-the-art anomaly detection methods when no transformations have been applied to the time series.
no code implementations • 6 Feb 2020 • Clément Bouttier, Tommaso Cesari, Mélanie Ducoffe, Sébastien Gerchinovitz
We consider the problem of maximizing a non-concave Lipschitz multivariate function over a compact domain by sequentially querying its (possibly perturbed) values.
2 code implementations • ICLR 2018 • Nicolas Courty, Rémi Flamary, Mélanie Ducoffe
Our goal is to alleviate this problem by providing an approximation mechanism that allows to break its inherent complexity.
1 code implementation • 9 May 2016 • The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang
Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements.