no code implementations • 15 Aug 2022 • Carole H. Sudre, Kimberlin Van Wijnen, Florian Dubost, Hieab Adams, David Atkinson, Frederik Barkhof, Mahlet A. Birhanu, Esther E. Bron, Robin Camarasa, Nish Chaturvedi, Yuan Chen, Zihao Chen, Shuai Chen, Qi Dou, Tavia Evans, Ivan Ezhov, Haojun Gao, Marta Girones Sanguesa, Juan Domingo Gispert, Beatriz Gomez Anson, Alun D. Hughes, M. Arfan Ikram, Silvia Ingala, H. Rolf Jaeger, Florian Kofler, Hugo J. Kuijf, Denis Kutnar, Minho Lee, Bo Li, Luigi Lorenzini, Bjoern Menze, Jose Luis Molinuevo, Yiwei Pan, Elodie Puybareau, Rafael Rehwald, Ruisheng Su, Pengcheng Shi, Lorna Smith, Therese Tillin, Guillaume Tochon, Helene Urien, Bas H. M. van der Velden, Isabelle F. van der Velpen, Benedikt Wiestler, Frank J. Wolters, Pinar Yilmaz, Marius de Groot, Meike W. Vernooij, Marleen de Bruijne
This challenge aimed to promote the development of methods for automated detection and segmentation of small and sparse imaging markers of cerebral small vessel disease, namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes of presumed vascular origin (Task 3) while leveraging weak and noisy labels.
1 code implementation • Nature Communications Biology 2021 • Arno van Hilten, Seven A. Kushner, Manfred Kayser, M. Arfan Ikram, Hieab H. H. Adams, Caroline C. W. Klaver, Wiro J. Niessen, Gennady V. Roshchupkin
Here, we propose GenNet, a novel open-source deep learning framework for predicting phenotypes from genetic variants.
1 code implementation • 28 Dec 2020 • Bo Li, Wiro J. Niessen, Stefan Klein, Marius de Groot, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron
This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net.
no code implementations • 3 Nov 2020 • Bo Li, Wiro J. Niessen, Stefan Klein, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron
We here propose an analytical framework based on an unbiased learning strategy for group-wise registration that simultaneously registers images to the mean space of a group to obtain consistent segmentations.
no code implementations • 26 May 2020 • Bo Li, Marius de Groot, Rebecca M. E. Steketee, Rozanna Meijboom, Marion Smits, Meike W. Vernooij, M. Arfan Ikram, Jiren Liu, Wiro J. Niessen, Esther E. Bron
This 3D end-to-end method is trained to segment 25 WM tracts in aging individuals from a large population-based study (N=9752, 1. 5T MRI).
no code implementations • 29 Jul 2019 • Kimberlin M. H. van Wijnen, Florian Dubost, Pinar Yilmaz, M. Arfan Ikram, Wiro J. Niessen, Hieab Adams, Meike W. Vernooij, Marleen de Bruijne
We show the potential of this approach to detect enlarged perivascular spaces in white matter on a large brain MRI dataset with an independent test set of 1000 scans.
no code implementations • 5 Jun 2019 • Florian Dubost, Hieab Adams, Pinar Yilmaz, Gerda Bortsova, Gijs van Tulder, M. Arfan Ikram, Wiro Niessen, Meike Vernooij, Marleen de Bruijne
For comparison, we modify state-of-the-art methods to compute attention maps for weakly supervised object detection, by using a global regression objective instead of the more conventional classification objective.
no code implementations • 12 Jul 2018 • Florian Dubost, Gerda Bortsova, Hieab Adams, M. Arfan Ikram, Wiro Niessen, Meike Vernooij, Marleen de Bruijne
The proposed method reached an intraclass correlation coefficient between ground truth and network predictions of 0. 73 on the first task and 0. 84 on the second task, only using between 25 and 30 scans with a single global label per scan for training.
no code implementations • 16 Feb 2018 • Florian Dubost, Hieab Adams, Gerda Bortsova, M. Arfan Ikram, Wiro Niessen, Meike Vernooij, Marleen de Bruijne
We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI.
no code implementations • 15 Mar 2017 • Veronika Cheplygina, Annegreet van Opbroek, M. Arfan Ikram, Meike W. Vernooij, Marleen de Bruijne
We show that the asymmetry can indeed be informative, and that computing the similarity from the test image to the training images is more appropriate than the opposite direction.