1 code implementation • 18 May 2023 • Andres Diaz-Pinto, Pritesh Mehta, Sachidanand Alle, Muhammad Asad, Richard Brown, Vishwesh Nath, Alvin Ihsani, Michela Antonelli, Daniel Palkovics, Csaba Pinter, Ron Alkalay, Steve Pieper, Holger R. Roth, Daguang Xu, Prerna Dogra, Tom Vercauteren, Andrew Feng, Abood Quraini, Sebastien Ourselin, M. Jorge Cardoso
Automatic segmentation of medical images is a key step for diagnostic and interventional tasks.
no code implementations • 14 Apr 2023 • Ashay Patel, Petru-Danial Tudiosu, Walter H. L. Pinaya, Gary Cook, Vicky Goh, Sebastien Ourselin, M. Jorge Cardoso
In addition, we show the efficacy of this approach on out-of-sample data showcasing the generalizability of this approach with limited training data.
no code implementations • 3 Feb 2023 • Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Büttner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice.
no code implementations • 29 Dec 2022 • Vikash Gupta, Barbaros Selnur Erdal, Carolina Ramirez, Ralf Floca, Laurence Jackson, Brad Genereaux, Sidney Bryson, Christopher P Bridge, Jens Kleesiek, Felix Nensa, Rickmer Braren, Khaled Younis, Tobias Penzkofer, Andreas Michael Bucher, Ming Melvin Qin, Gigon Bae, Hyeonhoon Lee, M. Jorge Cardoso, Sebastien Ourselin, Eric Kerfoot, Rahul Choudhury, Richard D. White, Tessa Cook, David Bericat, Matthew Lungren, Risto Haukioja, Haris Shuaib
To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation.
no code implementations • 8 Dec 2022 • Pedro F Da Costa, Jessica Dafflon, Sergio Leonardo Mendes, João Ricardo Sato, M. Jorge Cardoso, Robert Leech, Emily JH Jones, Walter H. L. Pinaya
Using the predicted likelihood of the scans as a proxy for a normative score, we obtained an AUROC of 0. 82 when assessing the difference between controls and individuals with early-stage schizophrenia.
1 code implementation • 14 Nov 2022 • Mark S. Graham, Walter H. L. Pinaya, Petru-Daniel Tudosiu, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
We propose to use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs.
1 code implementation • 4 Nov 2022 • M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien Ourselin, Andrew Feng
For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e. g. geometry, physiology, physics) of medical data being processed.
no code implementations • 15 Sep 2022 • Walter H. L. Pinaya, Petru-Daniel Tudosiu, Jessica Dafflon, Pedro F Da Costa, Virginia Fernandez, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
In this study, we explore using Latent Diffusion Models to generate synthetic images from high-resolution 3D brain images.
1 code implementation • 13 Jun 2022 • Mikael Brudfors, Yael Balbastre, John Ashburner, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Data used in image segmentation are not always defined on the same grid.
no code implementations • 7 Jun 2022 • Walter H. L. Pinaya, Mark S. Graham, Robert Gray, Pedro F Da Costa, Petru-Daniel Tudosiu, Paul Wright, Yee H. Mah, Andrew D. MacKinnon, James T. Teo, Rolf Jager, David Werring, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Deep generative models have emerged as promising tools for detecting arbitrary anomalies in data, dispensing with the necessity for manual labelling.
no code implementations • 3 Jun 2022 • Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Florian Büttner, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, Emre Kavur, Carole H. Sudre, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, M. Jorge Cardoso, Veronika Cheplygina, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Paul F. Jäger
The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), data set and algorithm output.
2 code implementations • 23 Mar 2022 • Andres Diaz-Pinto, Sachidanand Alle, Vishwesh Nath, Yucheng Tang, Alvin Ihsani, Muhammad Asad, Fernando Pérez-García, Pritesh Mehta, Wenqi Li, Mona Flores, Holger R. Roth, Tom Vercauteren, Daguang Xu, Prerna Dogra, Sebastien Ourselin, Andrew Feng, M. Jorge Cardoso
MONAI Label allows researchers to make incremental improvements to their AI-based annotation application by making them available to other researchers and clinicians alike.
no code implementations • 17 Oct 2021 • Amy PK Nelson, Robert J Gray, James K Ruffle, Henry C Watkins, Daniel Herron, Nick Sorros, Danil Mikhailov, M. Jorge Cardoso, Sebastien Ourselin, Nick McNally, Bryan Williams, Geraint E. Rees, Parashkev Nachev
We show that citations are only moderately predictive of translational impact as judged by inclusion in patents, guidelines, or policy documents.
no code implementations • 6 Sep 2021 • Richard Shaw, Carole H. Sudre, Sebastien Ourselin, M. Jorge Cardoso, Hugh G. Pemberton
We aim to automate the process using a probabilistic network that estimates segmentation uncertainty through a heteroscedastic noise model, providing a measure of task-specific quality.
no code implementations • 18 Aug 2021 • Mariana da Silva, Carole H. Sudre, Kara Garcia, Cher Bass, M. Jorge Cardoso, Emma C. Robinson
Biomechanical modeling of tissue deformation can be used to simulate different scenarios of longitudinal brain evolution.
no code implementations • 21 Jun 2021 • Richard Shaw, Carole H. Sudre, Sebastien Ourselin, M. Jorge Cardoso
Thus, we argue that quality control for visual assessment cannot be equated to quality control for algorithmic processing.
1 code implementation • 10 Jun 2021 • Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, AnnetteKopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Goli Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, Henkjan Huisman, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbelaez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Namkug Kim, Ildoo Kim, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein, M. Jorge Cardoso
Segmentation is so far the most widely investigated medical image processing task, but the various segmentation challenges have typically been organized in isolation, such that algorithm development was driven by the need to tackle a single specific clinical problem.
1 code implementation • 12 Apr 2021 • Mikael Brudfors, Yaël Balbastre, John Ashburner, Geraint Rees, Parashkev Nachev, Sébastien Ourselin, M. Jorge Cardoso
While convolutional neural networks (CNNs) trained by back-propagation have seen unprecedented success at semantic segmentation tasks, they are known to struggle on out-of-distribution data.
1 code implementation • 12 Apr 2021 • Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Keyvan Farahani, Bram van Ginneken, Ben Glocker, Patrick Godau, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Alexandros Karargyris, Alan Karthikesalingam, Bernhard Kainz, Emre Kavur, Hannes Kenngott, Jens Kleesiek, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clarisa Sanchez Gutierrez, Julien Schroeter, Anindo Saha, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Annette Kopp-Schneider, Paul Jäger, Lena Maier-Hein
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.
no code implementations • 5 Apr 2021 • Maria A. Zuluaga, Alex F. Mendelson, M. Jorge Cardoso, Andrew M. Taylor, Sébastien Ourselin
One of the main sources of error in multi-atlas segmentation propagation approaches comes from the use of atlas databases that are morphologically dissimilar to the target image.
no code implementations • 23 Feb 2021 • Walter Hugo Lopez Pinaya, Petru-Daniel Tudosiu, Robert Gray, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Pathological brain appearances may be so heterogeneous as to be intelligible only as anomalies, defined by their deviation from normality rather than any specific pathological characteristic.
no code implementations • 16 Jan 2021 • M. Jorge Cardoso, Marc Modat, Tom Vercauteren, Sebastien Ourselin
Imaging devices exploit the Nyquist-Shannon sampling theorem to avoid both aliasing and redundant oversampling by design.
no code implementations • 14 Dec 2020 • Mariana da Silva, Kara Garcia, Carole H. Sudre, Cher Bass, M. Jorge Cardoso, Emma Robinson
We present a proof-of-concept, deep learning (DL) based, differentiable biomechanical model of realistic brain deformations.
no code implementations • 5 Oct 2020 • Thomas Varsavsky, Mauricio Orbes-Arteaga, Carole H. Sudre, Mark S. Graham, Parashkev Nachev, M. Jorge Cardoso
Convolutional neural networks trained on publicly available medical imaging datasets (source domain) rarely generalise to different scanners or acquisition protocols (target domain).
no code implementations • 16 Sep 2020 • Mark S. Graham, Carole H. Sudre, Thomas Varsavsky, Petru-Daniel Tudosiu, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
We introduce a hierarchically-aware brain parcellation method that works by predicting the decisions at each branch in the label tree.
no code implementations • 20 Apr 2020 • Marta B. M. Ranzini, Irme Groothuis, Kerstin Kläser, M. Jorge Cardoso, Johann Henckel, Sébastien Ourselin, Alister Hart, Marc Modat
Metal artefact reduction (MAR) techniques aim at removing metal-induced noise from clinical images.
no code implementations • 5 Apr 2020 • Maria A. Zuluaga, M. Jorge Cardoso, Sébastien Ourselin
Accurate segmentation of the right ventricle (RV) is a crucial step in the assessment of the ventricular structure and function.
1 code implementation • 1 Apr 2020 • Theodoros Pissas, Edward Bloch, M. Jorge Cardoso, Blanca Flores, Odysseas Georgiadis, Sepehr Jalali, Claudio Ravasio, Danail Stoyanov, Lyndon Da Cruz, Christos Bergeles
This paper addresses retinal vessel segmentation on optical coherence tomography angiography (OCT-A) images of the human retina.
no code implementations • 18 Mar 2020 • Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett Landman, Klaus Maier-Hein, Sebastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, M. Jorge Cardoso
Data-driven Machine Learning has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems.
no code implementations • MIDL 2019 • Petru-Daniel Tudosiu, Thomas Varsavsky, Richard Shaw, Mark Graham, Parashkev Nachev, Sebastien Ourselin, Carole H. Sudre, M. Jorge Cardoso
The increasing efficiency and compactness of deep learning architectures, together with hardware improvements, have enabled the complex and high-dimensional modelling of medical volumetric data at higher resolutions.
no code implementations • MIDL 2019 • Richard Shaw, Carole H. Sudre, Sebastien Ourselin, M. Jorge Cardoso
By augmenting the training data with different types of simulated k-space artefacts, we propose a novel cascading CNN architecture based on a student-teacher framework to decouple sources of uncertainty related to different k-space augmentations in an entirely self-supervised manner.
no code implementations • 22 Dec 2019 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, Marc Modat, M. Jorge Cardoso, Sebastien Ourselin, Lauge Sorensen
Weight initialization is important for faster convergence and stability of deep neural networks training.
no code implementations • 2 Oct 2019 • Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin, M. Jorge Cardoso, Andrew Feng
Due to medical data privacy regulations, it is often infeasible to collect and share patient data in a centralised data lake.
no code implementations • 4 Sep 2019 • Carole H. Sudre, Beatriz Gomez Anson, Silvia Ingala, Chris D. Lane, Daniel Jimenez, Lukas Haider, Thomas Varsavsky, Ryutaro Tanno, Lorna Smith, Sébastien Ourselin, Rolf H. Jäger, M. Jorge Cardoso
Classification and differentiation of small pathological objects may greatly vary among human raters due to differences in training, expertise and their consistency over time.
no code implementations • ICCV 2019 • Felix J. S. Bragman, Ryutaro Tanno, Sebastien Ourselin, Daniel C. Alexander, M. Jorge Cardoso
The performance of multi-task learning in Convolutional Neural Networks (CNNs) hinges on the design of feature sharing between tasks within the architecture.
no code implementations • 21 Aug 2019 • Kerstin Kläser, Thomas Varsavsky, Pawel Markiewicz, Tom Vercauteren, David Atkinson, Kris Thielemans, Brian Hutton, M. Jorge Cardoso, Sebastien Ourselin
Quantitative results show that the network generates pCTs that seem less accurate when evaluating the Mean Absolute Error on the pCT (69. 68HU) compared to a baseline CNN (66. 25HU), but lead to significant improvement in the PET reconstruction - 115a. u.
no code implementations • 16 Aug 2019 • Mauricio Orbes-Arteaga, Thomas Varsavsky, Carole H. Sudre, Zach Eaton-Rosen, Lewis J. Haddow, Lauge Sørensen, Mads Nielsen, Akshay Pai, Sébastien Ourselin, Marc Modat, Parashkev Nachev, M. Jorge Cardoso
Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to $n$ target domains (as long as there is paired data covering all domains).
no code implementations • 14 Aug 2019 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, Marc Modat, M. Jorge Cardoso, Sébastien Ourselin, Lauge Sørensen
Different M-estimators and logistic functions, including a novel type proposed in this study, called modified Stannard, are evaluated on the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for robust modeling of volumetric MRI and PET biomarkers, CSF measurements, as well as cognitive tests.
no code implementations • 25 Jul 2019 • Zach Eaton-Rosen, Thomas Varsavsky, Sebastien Ourselin, M. Jorge Cardoso
Counting is a fundamental task in biomedical imaging and count is an important biomarker in a number of conditions.
no code implementations • 21 May 2019 • M. Jorge Cardoso, Aasa Feragen, Ben Glocker, Ender Konukoglu, Ipek Oguz, Gozde Unal, Tom Vercauteren
This compendium gathers all the accepted extended abstracts from the Second International Conference on Medical Imaging with Deep Learning (MIDL 2019), held in London, UK, 8-10 July 2019.
1 code implementation • 1 Apr 2019 • Hugo J. Kuijf, J. Matthijs Biesbroek, Jeroen de Bresser, Rutger Heinen, Simon Andermatt, Mariana Bento, Matt Berseth, Mikhail Belyaev, M. Jorge Cardoso, Adrià Casamitjana, D. Louis Collins, Mahsa Dadar, Achilleas Georgiou, Mohsen Ghafoorian, Dakai Jin, April Khademi, Jesse Knight, Hongwei Li, Xavier Lladó, Miguel Luna, Qaiser Mahmood, Richard McKinley, Alireza Mehrtash, Sébastien Ourselin, Bo-yong Park, Hyunjin Park, Sang Hyun Park, Simon Pezold, Elodie Puybareau, Leticia Rittner, Carole H. Sudre, Sergi Valverde, Verónica Vilaplana, Roland Wiest, Yongchao Xu, Ziyue Xu, Guodong Zeng, Jian-Guo Zhang, Guoyan Zheng, Christopher Chen, Wiesje van der Flier, Frederik Barkhof, Max A. Viergever, Geert Jan Biessels
Segmentation methods had to be containerized and submitted to the challenge organizers.
no code implementations • 17 Mar 2019 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Lauge Sørensen
The proposed LSTM algorithm is applied to model the progression of Alzheimer's disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i. e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method.
9 code implementations • 25 Feb 2019 • Amber L. Simpson, Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan Farahani, Bram van Ginneken, Annette Kopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc Gollub, Jennifer Golia-Pernicka, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Eugene Vorontsov, Lena Maier-Hein, M. Jorge Cardoso
Semantic segmentation of medical images aims to associate a pixel with a label in a medical image without human initialization.
no code implementations • 21 Dec 2018 • Carole H. Sudre, Beatriz Gomez Anson, Silvia Ingala, Chris D. Lane, Daniel Jimenez, Lukas Haider, Thomas Varsavsky, Lorna Smith, H. Rolf Jäger, M. Jorge Cardoso
Extremely small objects (ESO) have become observable on clinical routine magnetic resonance imaging acquisitions, thanks to a reduction in acquisition time at higher resolution.
no code implementations • 3 Oct 2018 • Mauricio Orbes Arteaga, Lauge Sørensen, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Stefan Sommer, Mads Nielsen, Christian Igel, Akshay Pai
For proper generalization performance of convolutional neural networks (CNNs) in medical image segmentation, the learnt features should be invariant under particular non-linear shape variations of the input.
no code implementations • 14 Sep 2018 • Stefano Moriconi, Maria A. Zuluaga, H. Rolf Jager, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Vascular graphs can embed a number of high-level features, from morphological parameters, to functional biomarkers, and represent an invaluable tool for longitudinal and cross-sectional clinical inference.
no code implementations • 22 Aug 2018 • Kerstin Kläser, Pawel Markiewicz, Marta Ranzini, Wenqi Li, Marc Modat, Brian F. Hutton, David Atkinson, Kris Thielemans, M. Jorge Cardoso, Sebastien Ourselin
Attenuation correction is an essential requirement of positron emission tomography (PET) image reconstruction to allow for accurate quantification.
no code implementations • 20 Aug 2018 • Mauricio Orbes-Arteaga, M. Jorge Cardoso, Lauge Sørensen, Marc Modat, Sébastien Ourselin, Mads Nielsen, Akshay Pai
Segmenting vascular pathologies such as white matter lesions in Brain magnetic resonance images (MRIs) require acquisition of multiple sequences such as T1-weighted (T1-w) --on which lesions appear hypointense-- and fluid attenuated inversion recovery (FLAIR) sequence --where lesions appear hyperintense--.
no code implementations • 16 Aug 2018 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Lauge Sørensen
This paper shows that built-in handling of missing values in LSTM network training paves the way for application of RNNs in disease progression modeling.
no code implementations • 17 Jul 2018 • Thomas Varsavsky, Zach Eaton-Rosen, Carole H. Sudre, Parashkev Nachev, M. Jorge Cardoso
In a research context, image acquisition will often involve a pre-defined static protocol and the data will be of high quality.
no code implementations • 22 Jun 2018 • Zach Eaton-Rosen, Felix Bragman, Sotirios Bisdas, Sebastien Ourselin, M. Jorge Cardoso
Automated medical image segmentation, specifically using deep learning, has shown outstanding performance in semantic segmentation tasks.
no code implementations • 18 Jun 2018 • Felix J. S. Bragman, Ryutaro Tanno, Zach Eaton-Rosen, Wenqi Li, David J. Hawkes, Sebastien Ourselin, Daniel C. Alexander, Jamie R. McClelland, M. Jorge Cardoso
Multi-task neural network architectures provide a mechanism that jointly integrates information from distinct sources.
no code implementations • 8 Jun 2018 • Stefano Moriconi, Maria A. Zuluaga, H. Rolf Jäger, Parashkev Nachev, Sébastien Ourselin, M. Jorge Cardoso
The analysis of vessel morphology and connectivity has an impact on a number of cardiovascular and neurovascular applications by providing patient-specific high-level quantitative features such as spatial location, direction and scale.
no code implementations • NeuroImage 2018 • Claudia Blaiotta, Patrick Freund, M. Jorge Cardoso, John Ashburner
In this paper we present a hierarchical generative model of medical image data, which can capture simultaneously the variability of both signal intensity and anatomical shapes across large populations.
10 code implementations • 11 Sep 2017 • Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I. Shakir, Guotai Wang, Zach Eaton-Rosen, Robert Gray, Tom Doel, Yipeng Hu, Tom Whyntie, Parashkev Nachev, Marc Modat, Dean C. Barratt, Sébastien Ourselin, M. Jorge Cardoso, Tom Vercauteren
NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications.
no code implementations • 8 Sep 2017 • Lorenz Berger, Eoin Hyde, M. Jorge Cardoso, Sebastien Ourselin
Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation.
7 code implementations • 11 Jul 2017 • Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sébastien Ourselin, M. Jorge Cardoso
Deep-learning has proved in recent years to be a powerful tool for image analysis and is now widely used to segment both 2D and 3D medical images.
4 code implementations • 6 Jul 2017 • Wenqi Li, Guotai Wang, Lucas Fidon, Sebastien Ourselin, M. Jorge Cardoso, Tom Vercauteren
To illustrate its efficiency of learning 3D representation from large-scale image data, the proposed network is validated with the challenging task of parcellating 155 neuroanatomical structures from brain MR images.
no code implementations • 5 Jul 2017 • Claudia Blaiotta, Patrick Freund, M. Jorge Cardoso, John Ashburner
In this paper we will focus on the potential and on the challenges associated with the development of an integrated brain and spinal cord modelling framework for processing MR neuroimaging data.