no code implementations • 23 Feb 2021 • The LZ Collaboration, D. S. Akerib, A. K. Al Musalhi, S. K. Alsum, C. S. Amarasinghe, A. Ames, T. J. Anderson, N. Angelides, H. M. Araújo, J. E. Armstrong, M. Arthurs, X. Bai, J. Balajthy, S. Balashov, J. Bang, J. W. Bargemann, D. Bauer, A. Baxter, P. Beltrame, E. P. Bernard, A. Bernstein, A. Bhatti, A. Biekert, T. P. Biesiadzinski, H. J. Birch, G. M. Blockinger, B. Boxer, C. A. J. Brew, P. Brás, S. Burdin, J. K. Busenitz, M. Buuck, R. Cabrita, M. C. Carmona-Benitez, M. Cascella, C. Chan, N. I. Chott, A. Cole, M. V. Converse, A. Cottle, G. Cox, O. Creaner, J. E. Cutter, C. E. Dahl, L. de Viveiros, J. E. Y. Dobson, E. Druszkiewicz, S. R. Eriksen, A. Fan, S. Fayer, N. M. Fearon, S. Fiorucci, H. Flaecher, E. D. Fraser, T. Fruth, R. J. Gaitskell, J. Genovesi, C. Ghag, E. Gibson, S. Gokhale, M. G. D. van der Grinten, C. B. Gwilliam, C. R. Hall, C. A. Hardy, S. J. Haselschwardt, S. A. Hertel, M. Horn, D. Q. Huang, C. M. Ignarra, O. Jahangir, R. S. James, W. Ji, J. Johnson, A. C. Kaboth, A. C. Kamaha, K. Kamdin, K. Kazkaz, D. Khaitan, A. Khazov, I. Khurana, D. Kodroff, L. Korley, E. V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V. A. Kudryavtsev, E. A. Leason, K. T. Lesko, C. Levy, J. Li, J. Liao, J. Lin, A. Lindote, R. Linehan, W. H. Lippincott, X. Liu, M. I. Lopes, E. Lopez Asamar, B. López Paredes, W. Lorenzon, S. Luitz, P. A. Majewski, A. Manalaysay, L. Manenti, R. L. Mannino, N. Marangou, M. E. McCarthy, D. N. McKinsey, J. McLaughlin, E. H. Miller, E. Mizrachi, A. Monte, M. E. Monzani, J. A. Morad, J. D. Morales Mendoza, E. Morrison, B. J. Mount, A. St. J. Murphy, D. Naim, A. Naylor, C. Nedlik, H. N. Nelson, F. Neves, J. A. Nikoleyczik, A. Nilima, I. Olcina, K. C. Oliver-Mallory, S. Pal, K. J. Palladino, J. Palmer, S. Patton, N. Parveen, E. K. Pease, B. Penning, G. Pereira, A. Piepke, Y. Qie, J. Reichenbacher, C. A. Rhyne, A. Richards, Q. Riffard, G. R. C. Rischbieter, R. Rosero, P. Rossiter, D. Santone, A. B. M. R. Sazzad, R. W. Schnee, P. R. Scovell, S. Shaw, T. A. Shutt, J. J. Silk, C. Silva, R. Smith, M. Solmaz, V. N. Solovov, P. Sorensen, J. Soria, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T. J. Sumner, N. Swanson, M. Szydagis, W. C. Taylor, R. Taylor, D. J. Temples, P. A. Terman, D. R. Tiedt, M. Timalsina, W. H. To, D. R. Tovey, M. Tripathi, D. R. Tronstad, W. Turner, U. Utku, A. Vaitkus, B. Wang, J. J. Wang, W. Wang, J. R. Watson, R. C. Webb, R. G. White, T. J. Whitis, M. Williams, F. L. H. Wolfs, D. Woodward, C. J. Wright, X. Xiang, J. Xu, M. Yeh, P. Zarzhitsky
LUX-ZEPLIN (LZ) is a dark matter detector expected to obtain world-leading sensitivity to weakly interacting massive particles (WIMPs) interacting via nuclear recoils with a ~7-tonne xenon target mass.
High Energy Physics - Experiment Cosmology and Nongalactic Astrophysics High Energy Physics - Phenomenology
no code implementations • 21 Jan 2021 • D. S. Akerib, A. K. Al Musalhi, S. K. Alsum, C. S. Amarasinghe, A. Ames, T. J. Anderson, N. Angelides, H. M. Araújo, J. E. Armstrong, M. Arthurs, X. Bai, J. Balajthy, S. Balashov, J. Bang, J. W. Bargemann, D. Bauer, A. Baxter, P. Beltrame, E. P. Bernard, A. Bernstein, A. Bhatti, A. Biekert, T. P. Biesiadzinski, H. J. Birch, G. M. Blockinger, B. Boxer, C. A. J. Brew, P. Brás, S. Burdin, J. K. Busenitz, M. Buuck, R. Cabrita, M. C. Carmona-Benitez, M. Cascella, C. Chan, N. I. Chott, A. Cole, M. V. Converse, A. Cottle, G. Cox, J. E. Cutter, C. E. Dahl, L. de Viveiros, J. E. Y. Dobson, E. Druszkiewicz, S. R. Eriksen, A. Fan, S. Fayer, N. M. Fearon, S. Fiorucci, H. Flaecher, E. D. Fraser, T. Fruth, R. J. Gaitskell, J. Genovesi, C. Ghag, E. Gibson, S. Gokhale, M. G. D. van der Grinten, C. B. Gwilliam, C. R. Hall, S. J. Haselschwardt, S. A. Hertel, M. Horn, D. Q. Huang, C. M. Ignarra, O. Jahangir, R. S. James, W. Ji, J. Johnson, A. C. Kaboth, A. C. Kamaha, K. Kamdin, K. Kazkaz, D. Khaitan, A. Khazov, I. Khurana, D. Kodroff, L. Korley, E. V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V. A. Kudryavtsev, E. A. Leason, K. T. Lesko, C. Levy, J. Li, J. Liao, J. Lin, A. Lindote, R. Linehan, W. H. Lippincott, X. Liu, M. I. Lopes, E. Lopez Asamar, B. López Paredes, W. Lorenzon, S. Luitz, P. A. Majewski, A. Manalaysay, L. Manenti, R. L. Mannino, N. Marangou, M. E. McCarthy, D. N. McKinsey, J. McLaughlin, E. H. Miller, E. Mizrachi, A. Monte, M. E. Monzani, J. A. Morad, J. D. Morales Mendoza, E. Morrison, B. J. Mount, A. St. J. Murphy, D. Naim, A. Naylor, C. Nedlik, H. N. Nelson, F. Neves, J. A. Nikoleyczik, I. Olcina, K. C. Oliver-Mallory, S. Pal, K. J. Palladino, J. Palmer, N. Parveen, E. K. Pease, B. Penning, G. Pereira, A. Piepke, Y. Qie, J. Reichenbacher, C. A. Rhyne, A. Richards, Q. Riffard, G. R. C. Rischbieter, R. Rosero, P. Rossiter, D. Santone, A. B. M. R. Sazzad, R. W. Schnee, P. R. Scovell, S. Shaw, T. A. Shutt, J. J. Silk, C. Silva, R. Smith, M. Solmaz, V. N. Solovov, P. Sorensen, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T. J. Sumner, N. Swanson, M. Szydagis, W. C. Taylor, R. Taylor, D. J. Temples, P. A. Terman, D. R. Tiedt, M. Timalsina, W. H. To, M. Tripathi, D. R. Tronstad, W. Turner, U. Utku, A. Vaitkus, B. Wang, J. J. Wang, W. Wang, J. R. Watson, R. C. Webb, R. G. White, T. J. Whitis, M. Williams, F. L. H. Wolfs, D. Woodward, C. J. Wright, X. Xiang, J. Xu, M. Yeh, P. Zarzhitsky
This paper describes a simulation study exploring two techniques to lower the energy threshold of LZ to gain sensitivity to low-mass dark matter and astrophysical neutrinos, which will be applicable to other liquid xenon detectors.
Instrumentation and Methods for Astrophysics Instrumentation and Detectors
1 code implementation • 2 Dec 2020 • SBND Collaboration, R. Acciarri, C. Adams, C. Andreopoulos, J. Asaadi, M. Babicz, C. Backhouse, W. Badgett, L. Bagby, D. Barker, V. Basque, Q. Bazetto, M. Betancourt, A. Bhanderi, A. Bhat, C. Bonifazi, D. Brailsford, G. Brandt, T. Brooks, F. Carneiro, Y. Chen, H. Chen, G. Chisnall, I. Crespo-Anadón, E. Cristaldo, C. Cuesta, I., L. de Icaza Astiz, A. De Roeck, G. de Sá Pereira, M. Del Tutto, V. Di Benedetto, A. Ereditato, J. Evans, C. Ezeribe, S. Fitzpatrick, T. Fleming, W. Foreman, D. Franco, I. Furic, P. Furmanski, S. Gao, D. Garcia-Gamez, H. Frandini, G. Ge, I. Gil-Botella, S. Gollapinni, O. Goodwin, P. Green, C. Griffith, R. Guenette, P. Guzowski, T. Ham, J. Henzerling, A. Holin, B. Howard, R., S. Jones, D. Kalra, G. Karagiorgi, L. Kashur, W. Ketchum, M., J. Kim, A. Kudryavtsev, J. Larkin, H. Lay, I. Lepetic, B., R. Littlejohn, W., C. Louis, A., A. Machado, M. Malek, D. Mardsen, C. Mariani, F. Marinho, A. Mastbaum, K. Mavrokoridis, N. McConkey, V. Meddage, P. Méndez, T. Mettler, K. Mistry, A. Mogan, J. Molina, M. Mooney, L. Mora, C., A. Moura, J. Mousseau, A. Navrer-Agasson, F., J. Nicolas-Arnaldos, A. Nowak, O. Palamara, V. Pandey, J. Pater, L. Paulucci, V., L. Pimentel, F. Psihas, G. Putnam, X. Qian, E. Raguzin, H. Ray, M. Reggiani-Guzzo, D. Rivera, M. Roda, M. Ross-Lonergan, G. Scanavini, A. Scarff, D., W. Schmitz, A. Schukraft, E. Segreto, M. Soares Nunes, M. Soderberg, S. Söldner-Rembold, J. Spitz, N., J., C. Spooner, M. Stancari, V. Stenico, A. Szelc, W. Tang, J. Tena Vidal, D. Torretta, M. Toups, C. Touramanis, M. Tripathi, S. Tufanli, E. Tyley, G., A. Valdiviesso, E. Worcester, M. Worcester, G. Yarbrough, J. Yu, B. Zamorano, J. Zennamo, A. Zglam
In liquid argon time projection chambers exposed to neutrino beams and running on or near surface levels, cosmic muons and other cosmic particles are incident on the detectors while a single neutrino-induced event is being recorded.
Semantic Segmentation
Data Analysis, Statistics and Probability
1 code implementation • 9 Dec 2019 • D. S. Akerib, C. W. Akerlof, A. Alqahtani, S. K. Alsum, T. J. Anderson, N. Angelides, H. M. Araújo, J. E. Armstrong, M. Arthurs, X. Bai, J. Balajthy, S. Balashov, J. Bang, A. Baxter, J. Bensinger, E. P. Bernard, A. Bernstein, A. Bhatti, A. Biekert, T. P. Biesiadzinski, H. J. Birch, K. E. Boast, B. Boxer, P. Brás, J. H. Buckley, V. V. Bugaev, S. Burdin, J. K. Busenitz, R. Cabrita, C. Carels, D. L. Carlsmith, M. C. Carmona Benitez, M. Cascella, C. Chan, N. I. Chott, A. Cole, A. Cottle, J. E. Cutter, C. E. Dahl, L. de Viveiros, J. E. Y. Dobson, E. Druszkiewicz, T. K. Edberg, S. R. Eriksen, A. Fan, S. Fiorucci, H. Flaecher, E. D. Fraser, T. Fruth, R. J. Gaitskell, J. Genovesi, C. Ghag, E. Gibson, M. G. D. Gilchriese, S. Gokhale, M. G. D. van der Grinten, C. R. Hall, A. Harrison, S. J. Haselschwardt, S. A. Hertel, J. YK. Hor, M. Horn, D. Q. Huang, C. M. Ignarra, O. Jahangir, W. Ji, J. Johnson, A. C. Kaboth, A. C. Kamaha, K. Kamdin, K. Kazkaz, D. Khaitan, A. Khazov, I. Khurana, C. D. Kocher, L. Korley, E. V. Korolkova, J. Kras, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V. A. Kudryavtsev, E. A. Leason, J. Lee, D. S. Leonard, K. T. Lesko, C. Levy, J. Li, J. Liao, F. T. Liao, J. Lin, A. Lindote, R. Linehan, W. H. Lippincott, R. Liu, X. Liu, C. Loniewski, M. I. Lopes, B. López Paredes, W. Lorenzon, S. Luitz, J. M. Lyle, P. A. Majewski, A. Manalaysay, L. Manenti, R. L. Mannino, N. Marangou, M. F. Marzioni, D. N. McKinsey, J. McLaughlin, Y. Meng, E. H. Miller, E. Mizrachi, A. Monte, M. E. Monzani, J. A. Morad, E. Morrison, B. J. Mount, A. St. J. Murphy, D. Naim, A. Naylor, C. Nedlik, C. Nehrkorn, H. N. Nelson, F. Neves, J. A. Nikoleyczik, A. Nilima, K. O'Sullivan, I. Olcina, K. C. Oliver-Mallory, S. Pal, K. J. Palladino, J. Palmer, N. Parveen, E. K. Pease, B. Penning, G. Pereira, K. Pushkin, J. Reichenbacher, C. A. Rhyne, Q. Riffard, G. R. C. Rischbieter, R. Rosero, P. Rossiter, G. Rutherford, D. Santone, A. B. M. R. Sazzad, R. W. Schnee, M. Schubnell, D. Seymour, S. Shaw, T. A. Shutt, J. J. Silk, C. Silva, R. Smith, M. Solmaz, V. N. Solovov, P. Sorensen, I. Stancu, A. Stevens, K. Stifter, T. J. Sumner, N. Swanson, M. Szydagis, M. Tan, W. C. Taylor, R. Taylor, D. J. Temples, P. A. Terman, D. R. Tiedt, M. Timalsina, A. Tomás, M. Tripathi, D. R. Tronstad, W. Turner, L. Tvrznikova, U. Utku, A. Vacheret, A. Vaitkus, J. J. Wang, W. Wang, J. R. Watson, R. C. Webb, R. G. White, T. J. Whitis, F. L. H. Wolfs, D. Woodward, X. Xiang, J. Xu, M. Yeh, P. Zarzhitsky
We report the expected LZ sensitivity to $^{136}$Xe neutrinoless double beta decay, taking advantage of the significant ($>$600 kg) $^{136}$Xe mass contained within the active volume of LZ without isotopic enrichment.
Nuclear Experiment
no code implementations • 7 Apr 2017 • D. S. Akerib, S. Alsum, C. Aquino, H. M. Araújo, X. Bai, A. J. Bailey, J. Balajthy, P. Beltrame, E. P. Bernard, A. Bernstein, T. P. Biesiadzinski, E. M. Boulton, P. Brás, D. Byram, S. B. Cahn, M. C. Carmona-Benitez, C. Chan, A. A. Chiller, C. Chiller, A. Currie, J. E. Cutter, T. J. R. Davison, A. Dobi, J. E. Y. Dobson, E. Druszkiewicz, B. N. Edwards, C. H. Faham, S. R. Fallon, S. Fiorucci, R. J. Gaitskell, V. M. Gehman, C. Ghag, K. R. Gibson, M. G. D. Gilchriese, C. R. Hall, M. Hanhardt, S. J. Haselschwardt, S. A. Hertel, D. P. Hogan, M. Horn, D. Q. Huang, C. M. Ignarra, R. G. Jacobsen, W. Ji, K. Kamdin, K. Kazkaz, D. Khaitan, R. Knoche, N. A. Larsen, C. Lee, B. G. Lenardo, K. T. Lesko, A. Lindote, M. I. Lopes, A. Manalaysay, R. L. Mannino, M. F. Marzioni, D. N. McKinsey, D. M. Mei, J. Mock, M. Moongweluwan, J. A. Morad, A. St. J. Murphy, C. Nehrkorn, H. N. Nelson, F. Neves, K. O'Sullivan, K. C. Oliver-Mallory, K. J. Palladino, E. K. Pease, L. Reichhart, C. Rhyne, S. Shaw, T. A. Shutt, C. Silva, M. Solmaz, V. N. Solovov, P. Sorensen, S. Stephenson, T. J. Sumner, M. Szydagis, D. J. Taylor, W. C. Taylor, B. P. Tennyson, P. A. Terman, D. R. Tiedt, W. H. To, M. Tripathi, L. Tvrznikova, S. Uvarov, V. Velan, J. R. Verbus, R. C. Webb, J. T. White, T. J. Whitis, M. S. Witherell, F. L. H. Wolfs, J. Xu, K. Yazdani, S. K. Young, C. Zhang
For galactic axion-like particles, values of gAe larger than 4. 2 $\times$ 10$^{-13}$ are excluded for particle masses in the range 1-16 keV/c$^{2}$.
Cosmology and Nongalactic Astrophysics High Energy Physics - Phenomenology