no code implementations • 27 Sep 2024 • Soroosh Tayebi Arasteh, Mahshad Lotfinia, Paula Andrea Perez-Toro, Tomas Arias-Vergara, Mahtab Ranji, Juan Rafael Orozco-Arroyave, Maria Schuster, Andreas Maier, Seung Hee Yang
To generalize our findings across languages and disorders, we validated our approach on a dataset of Spanish-speaking Parkinson's disease patients, leveraging pretrained models from healthy English-speaking datasets, and demonstrated that careful pretraining on large-scale task-specific datasets can maintain favorable accuracy under DP constraints.
no code implementations • 22 Jul 2024 • Soroosh Tayebi Arasteh, Mahshad Lotfinia, Keno Bressem, Robert Siepmann, Lisa Adams, Dyke Ferber, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
We evaluate the diagnostic accuracy of various LLMs when answering radiology-specific questions with and without access to additional online information via RAG.
1 code implementation • 27 Aug 2023 • Soroosh Tayebi Arasteh, Tianyu Han, Mahshad Lotfinia, Christiane Kuhl, Jakob Nikolas Kather, Daniel Truhn, Sven Nebelung
A knowledge gap persists between machine learning (ML) developers (e. g., data scientists) and practitioners (e. g., clinicians), hampering the full utilization of ML for clinical data analysis.
1 code implementation • 10 Jun 2023 • Soroosh Tayebi Arasteh, Mahshad Lotfinia, Teresa Nolte, Marwin Saehn, Peter Isfort, Christiane Kuhl, Sven Nebelung, Georgios Kaissis, Daniel Truhn
We specifically investigate the performance of models trained with DP as compared to models trained without DP on data from institutions that the model had not seen during its training (i. e., external validation) - the situation that is reflective of the clinical use of AI models.
1 code implementation • 21 Apr 2021 • Soroosh Tayebi Arasteh, Mehrpad Monajem, Vincent Christlein, Philipp Heinrich, Anguelos Nicolaou, Hamidreza Naderi Boldaji, Mahshad Lotfinia, Stefan Evert
As a strong baseline, we propose a two-stage DL-based method: first, we create automatically labeled training data by applying a standard sentiment classifier to tweet replies and aggregating its predictions for each original tweet; our rationale is that individual errors made by the classifier are likely to cancel out in the aggregation step.
Ranked #1 on
Tweet-Reply Sentiment Analysis
on RETWEET
1 code implementation • 4 Feb 2021 • Mahshad Lotfinia, Soroosh Tayebi Arasteh
Moreover, instead of using a constant value of flow stress during the multi-pass rolling process, we use a Finite Difference (FD) formulation of the equilibrium equation in order to account for the dynamic behavior of the flow stress, which leads to the estimation of the mean pressure, which the strip enforces to the rolls during deformation.