no code implementations • 30 Jan 2025 • Malte Tölle, Mohamad Scharaf, Samantha Fischer, Christoph Reich, Silav Zeid, Christoph Dieterich, Benjamin Meder, Norbert Frey, Philipp Wild, Sandy Engelhardt
A patient undergoes multiple examinations in each hospital stay, where each provides different facets of the health status.
no code implementations • 12 Jul 2024 • Malte Tölle, Lukas Burger, Halvar Kelm, Florian André, Peter Bannas, Gerhard Diller, Norbert Frey, Philipp Garthe, Stefan Groß, Anja Hennemuth, Lars Kaderali, Nina Krüger, Andreas Leha, Simon Martin, Alexander Meyer, Eike Nagel, Stefan Orwat, Clemens Scherer, Moritz Seiffert, Jan Moritz Seliger, Stefan Simm, Tim Friede, Tim Seidler, Sandy Engelhardt
Methods: DICOM structured reports enable the standardized linkage of arbitrary information beyond the imaging domain and can be used within Python deep learning pipelines with highdicom.
1 code implementation • 10 Jul 2024 • Malte Tölle, Fernando Navarro, Sebastian Eble, Ivo Wolf, Bjoern Menze, Sandy Engelhardt
Federated learning is one popular paradigm to train a joint model in a distributed, privacy-preserving environment.
2 code implementations • 10 Jul 2024 • Malte Tölle, Philipp Garthe, Clemens Scherer, Jan Moritz Seliger, Andreas Leha, Nina Krüger, Stefan Simm, Simon Martin, Sebastian Eble, Halvar Kelm, Moritz Bednorz, Florian André, Peter Bannas, Gerhard Diller, Norbert Frey, Stefan Groß, Anja Hennemuth, Lars Kaderali, Alexander Meyer, Eike Nagel, Stefan Orwat, Moritz Seiffert, Tim Friede, Tim Seidler, Sandy Engelhardt
First, CNNs predict on unlabeled data per label type and then the transformer learns from these predictions with label-specific heads.
1 code implementation • 29 Jul 2022 • Malte Tölle, Ullrich Köthe, Florian André, Benjamin Meder, Sandy Engelhardt
Manipulation of the latent space leads to a modified image while preserving important details.
1 code implementation • 2 Feb 2022 • Max-Heinrich Laves, Malte Tölle, Alexander Schlaefer, Sandy Engelhardt
In POTOBIM, we optimize both the parameters of the prior distribution and the posterior temperature with respect to reconstruction accuracy using Bayesian optimization with Gaussian process regression.
no code implementations • 11 Jun 2021 • Max-Heinrich Laves, Malte Tölle, Alexander Schlaefer, Sandy Engelhardt
Bayesian methods feature useful properties for solving inverse problems, such as tomographic reconstruction.
1 code implementation • 20 Aug 2020 • Max-Heinrich Laves, Malte Tölle, Tobias Ortmaier
We use a randomly initialized convolutional network as parameterization of the reconstructed image and perform gradient descent to match the observation, which is known as deep image prior.