Search Results for author: Manfredo Atzori

Found 14 papers, 7 papers with code

The more, the better? Evaluating the role of EEG preprocessing for deep learning applications

1 code implementation27 Nov 2024 Federico Del Pup, Andrea Zanola, Louis Fabrice Tshimanga, Alessandra Bertoldo, Manfredo Atzori

The last decade has witnessed a notable surge in deep learning applications for the analysis of electroencephalography (EEG) data, thanks to its demonstrated superiority over conventional statistical techniques.

Deep Learning EEG +1

Improving Quality Control of Whole Slide Images by Explicit Artifact Augmentation

1 code implementation17 Jun 2024 Artur Jurgas, Marek Wodzinski, Marina D'Amato, Jeroen van der Laak, Manfredo Atzori, Henning Müller

The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning.

Artifact Detection whole slide images

DeeperHistReg: Robust Whole Slide Images Registration Framework

1 code implementation19 Apr 2024 Marek Wodzinski, Niccolò Marini, Manfredo Atzori, Henning Müller

DeeperHistReg is a software framework dedicated to registering whole slide images (WSIs) acquired using multiple stains.

whole slide images

SelfEEG: A Python library for Self-Supervised Learning in Electroencephalography

1 code implementation20 Dec 2023 Federico Del Pup, Andrea Zanola, Louis Fabrice Tshimanga, Paolo Emilio Mazzon, Manfredo Atzori

SelfEEG is an open-source Python library developed to assist researchers in conducting Self-Supervised Learning (SSL) experiments on electroencephalography (EEG) data.

EEG Self-Supervised Learning

An overview of open source Deep Learning-based libraries for Neuroscience

no code implementations19 Dec 2022 Louis Fabrice Tshimanga, Manfredo Atzori, Federico Del Pup, Maurizio Corbetta

The results show that, among a high number of available software tools, several libraries are standing out in terms of functionalities for neuroscience applications.

Deep Learning Language Modelling

H&E-adversarial network: a convolutional neural network to learn stain-invariant features through Hematoxylin & Eosin regression

1 code implementation17 Jan 2022 Niccoló Marini, Manfredo Atzori, Sebastian Otálora, Stephane Marchand-Maillet, Henning Müller

Despite several methods that were developed, stain colour heterogeneity is still an unsolved challenge that limits the development of CNNs that can generalize on data from several medical centers.

whole slide images

The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients

no code implementations13 Dec 2021 Bhakti Baheti, Satrajit Chakrabarty, Hamed Akbari, Michel Bilello, Benedikt Wiestler, Julian Schwarting, Evan Calabrese, Jeffrey Rudie, Syed Abidi, Mina Mousa, Javier Villanueva-Meyer, Brandon K. K. Fields, Florian Kofler, Russell Takeshi Shinohara, Juan Eugenio Iglesias, Tony C. W. Mok, Albert C. S. Chung, Marek Wodzinski, Artur Jurgas, Niccolo Marini, Manfredo Atzori, Henning Muller, Christoph Grobroehmer, Hanna Siebert, Lasse Hansen, Mattias P. Heinrich, Luca Canalini, Jan Klein, Annika Gerken, Stefan Heldmann, Alessa Hering, Horst K. Hahn, Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim, Ramy A. Zeineldin, Mohamed E. Karar, Franziska Mathis-Ullrich, Oliver Burgert, Javid Abderezaei, Aymeric Pionteck, Agamdeep Chopra, Mehmet Kurt, Kewei Yan, Yonghong Yan, Zhe Tang, Jianqiang Ma, Sahar Almahfouz Nasser, Nikhil Cherian Kurian, Mohit Meena, Saqib Shamsi, Amit Sethi, Nicholas J. Tustison, Brian B. Avants, Philip Cook, James C. Gee, Lin Tian, Hastings Greer, Marc Niethammer, Andrew Hoopes, Malte Hoffmann, Adrian V. Dalca, Stergios Christodoulidis, Theo Estiene, Maria Vakalopoulou, Nikos Paragios, Daniel S. Marcus, Christos Davatzikos, Aristeidis Sotiras, Bjoern Menze, Spyridon Bakas, Diana Waldmannstetter

Registration of longitudinal brain MRI scans containing pathologies is challenging due to dramatic changes in tissue appearance.

Descriptive Image Registration +1

Visual Cues to Improve Myoelectric Control of Upper Limb Prostheses

no code implementations29 Aug 2017 Andrea Gigli, Arjan Gijsberts, Valentina Gregori, Matteo Cognolato, Manfredo Atzori, Barbara Caputo

In this paper, we develop an automated way to detect stable fixations and show that gaze information is indeed helpful in predicting hand movements.

General Classification Object

Cannot find the paper you are looking for? You can Submit a new open access paper.