Search Results for author: Mao Yang

Found 27 papers, 16 papers with code

LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens

1 code implementation21 Feb 2024 Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, Mao Yang

This is achieved by three key innovations: (i) we identify and exploit two forms of non-uniformities in positional interpolation through an efficient search, providing a better initialization for fine-tuning and enabling an 8x extension in non-fine-tuning scenarios; (ii) we introduce a progressive extension strategy that first fine-tunes a 256k length LLM and then conducts a second positional interpolation on the fine-tuned extended LLM to achieve a 2048k context window; (iii) we readjust LongRoPE on 8k length to recover the short context window performance.


Fewer is More: Boosting LLM Reasoning with Reinforced Context Pruning

no code implementations14 Dec 2023 Xijie Huang, Li Lyna Zhang, Kwang-Ting Cheng, Fan Yang, Mao Yang

In this work, we propose CoT-Influx, a novel approach that pushes the boundary of few-shot Chain-of-Thoughts (CoT) learning to improve LLM mathematical reasoning.

Arithmetic Reasoning Few-Shot Learning +3

Compresso: Structured Pruning with Collaborative Prompting Learns Compact Large Language Models

1 code implementation8 Oct 2023 Song Guo, Jiahang Xu, Li Lyna Zhang, Mao Yang

To this end, Compresso prunes LLaMA-7B to 5. 4B, maintaining original performance and even surpassing LLaMA-7B in reading comprehension by 2. 62%.

Natural Language Understanding Reading Comprehension

Model-enhanced Vector Index

1 code implementation NeurIPS 2023 Hailin Zhang, Yujing Wang, Qi Chen, Ruiheng Chang, Ting Zhang, Ziming Miao, Yingyan Hou, Yang Ding, Xupeng Miao, Haonan Wang, Bochen Pang, Yuefeng Zhan, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Xing Xie, Mao Yang, Bin Cui

We empirically show that our model achieves better performance on the commonly used academic benchmarks MSMARCO Passage and Natural Questions, with comparable serving latency to dense retrieval solutions.

Natural Questions Quantization +1

Empowering In-Browser Deep Learning Inference on Edge Devices with Just-in-Time Kernel Optimizations

no code implementations16 Sep 2023 Fucheng Jia, Shiqi Jiang, Ting Cao, Wei Cui, Tianrui Xia, Xu Cao, Yuanchun Li, Deyu Zhang, Ju Ren, Yunxin Liu, Lili Qiu, Mao Yang

Web is increasingly becoming the primary platform to deliver AI services onto edge devices, making in-browser deep learning (DL) inference more prominent.

Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference

1 code implementation23 Aug 2023 Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting Cao, Mao Yang

To tackle the high compute requirements of LLMs, the Mixture-of-Experts (MoE) architecture was introduced which is able to scale its model size without proportionally scaling up its computational requirements.

Constraint-aware and Ranking-distilled Token Pruning for Efficient Transformer Inference

1 code implementation26 Jun 2023 Junyan Li, Li Lyna Zhang, Jiahang Xu, Yujing Wang, Shaoguang Yan, Yunqing Xia, Yuqing Yang, Ting Cao, Hao Sun, Weiwei Deng, Qi Zhang, Mao Yang

Deploying pre-trained transformer models like BERT on downstream tasks in resource-constrained scenarios is challenging due to their high inference cost, which grows rapidly with input sequence length.

Model Compression

Accurate and Structured Pruning for Efficient Automatic Speech Recognition

no code implementations31 May 2023 Huiqiang Jiang, Li Lyna Zhang, Yuang Li, Yu Wu, Shijie Cao, Ting Cao, Yuqing Yang, Jinyu Li, Mao Yang, Lili Qiu

In this paper, we propose a novel compression strategy that leverages structured pruning and knowledge distillation to reduce the model size and inference cost of the Conformer model while preserving high recognition performance.

Automatic Speech Recognition Automatic Speech Recognition (ASR) +2

Integer or Floating Point? New Outlooks for Low-Bit Quantization on Large Language Models

no code implementations21 May 2023 Yijia Zhang, Lingran Zhao, Shijie Cao, WenQiang Wang, Ting Cao, Fan Yang, Mao Yang, Shanghang Zhang, Ningyi Xu

In this study, we conduct a comparative analysis of INT and FP quantization with the same bit-width, revealing that the optimal quantization format varies across different layers due to the complexity and diversity of tensor distribution.


ElasticViT: Conflict-aware Supernet Training for Deploying Fast Vision Transformer on Diverse Mobile Devices

1 code implementation ICCV 2023 Chen Tang, Li Lyna Zhang, Huiqiang Jiang, Jiahang Xu, Ting Cao, Quanlu Zhang, Yuqing Yang, Zhi Wang, Mao Yang

However, prior supernet training methods that rely on uniform sampling suffer from the gradient conflict issue: the sampled subnets can have vastly different model sizes (e. g., 50M vs. 2G FLOPs), leading to different optimization directions and inferior performance.

Neural Architecture Search

IRGen: Generative Modeling for Image Retrieval

1 code implementation17 Mar 2023 Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang, Qi Chen, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Mao Yang, Qingmin Liao, Baining Guo

While generative modeling has been ubiquitous in natural language processing and computer vision, its application to image retrieval remains unexplored.

Image Retrieval Retrieval

SpaceEvo: Hardware-Friendly Search Space Design for Efficient INT8 Inference

1 code implementation ICCV 2023 Li Lyna Zhang, Xudong Wang, Jiahang Xu, Quanlu Zhang, Yujing Wang, Yuqing Yang, Ningxin Zheng, Ting Cao, Mao Yang

The combination of Neural Architecture Search (NAS) and quantization has proven successful in automatically designing low-FLOPs INT8 quantized neural networks (QNN).

Neural Architecture Search Quantization

SwiftPruner: Reinforced Evolutionary Pruning for Efficient Ad Relevance

no code implementations30 Aug 2022 Li Lyna Zhang, Youkow Homma, Yujing Wang, Min Wu, Mao Yang, Ruofei Zhang, Ting Cao, Wei Shen

Remarkably, under our latency requirement of 1900us on CPU, SwiftPruner achieves a 0. 86% higher AUC than the state-of-the-art uniform sparse baseline for BERT-Mini on a large scale real-world dataset.

LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data

no code implementations19 Jun 2022 Xinquan Huang, Wenlei Shi, Xiaotian Gao, Xinran Wei, Jia Zhang, Jiang Bian, Mao Yang, Tie-Yan Liu

We investigate the physical information in the MSR loss, which we called long-range entanglements, and identify the challenge that the neural network requires the capacity to model the long-range entanglements in the spatial domain of the PDE, whose patterns vary in different PDEs.

Efficient Neural Network

Tutel: Adaptive Mixture-of-Experts at Scale

2 code implementations7 Jun 2022 Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, Yongqiang Xiong

On efficiency, Flex accelerates SwinV2-MoE, achieving up to 1. 55x and 2. 11x speedup in training and inference over Fairseq, respectively.

Object Detection

A Neural Corpus Indexer for Document Retrieval

1 code implementation6 Jun 2022 Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Allen Sun, Weiwei Deng, Qi Zhang, Mao Yang

To this end, we propose Neural Corpus Indexer (NCI), a sequence-to-sequence network that generates relevant document identifiers directly for a designated query.

Decoder Retrieval +1

WRENCH: A Comprehensive Benchmark for Weak Supervision

1 code implementation23 Sep 2021 Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, Alexander Ratner

To address these problems, we introduce a benchmark platform, WRENCH, for thorough and standardized evaluation of WS approaches.

OpEvo: An Evolutionary Method for Tensor Operator Optimization

no code implementations10 Jun 2020 Xiaotian Gao, Cui Wei, Lintao Zhang, Mao Yang

Training and inference efficiency of deep neural networks highly rely on the performance of tensor operators on hardware platforms.

Time-Series Anomaly Detection Service at Microsoft

3 code implementations10 Jun 2019 Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong, Qi Zhang

At Microsoft, we develop a time-series anomaly detection service which helps customers to monitor the time-series continuously and alert for potential incidents on time.

Anomaly Detection Saliency Detection +2

Cannot find the paper you are looking for? You can Submit a new open access paper.