no code implementations • 6 Dec 2024 • Karan Daga, Siddharth Agarwal, Zaeem Moti, Matthew BK Lee, Munaib Din, David Wood, Marc Modat, Thomas C Booth
Conclusions: Machine learning can be applied to predict the risk of rupture for intracranial aneurysms.
no code implementations • 13 May 2024 • Prajwal Ghimire, Ben Kinnersley, Golestan Karami, Prabhu Arumugam, Richard Houlston, Keyoumars Ashkan, Marc Modat, Thomas C Booth
Radiogenomic immune biomarkers have the potential to provide early treatment options to patients with glioblastoma.
no code implementations • 9 May 2024 • Siddharth Agarwal, David Wood, Robin Carpenter, Yiran Wei, Marc Modat, Thomas C Booth
This letter critically examines the recent article by Infante et al. assessing the utility of large language models (LLMs) like GPT-4, Perplexity, and Bard in identifying urgent findings in emergency radiology reports.
no code implementations • 9 May 2024 • Siddharth Agarwal, David A. Wood, Mariusz Grzeda, Chandhini Suresh, Munaib Din, James Cole, Marc Modat, Thomas C Booth
Conclusion: The paucity of eligible studies reflects that most abnormality detection AI studies were not adequately validated in representative clinical cohorts.
no code implementations • 22 Apr 2024 • Julien Quarez, Marc Modat, Sebastien Ourselin, Jonathan Shapey, Alejandro Granados
To address this, we developed a recurrent transformer model that tracks a surgeon's performance throughout a session by mapping hidden states to six OSATS, derived from kinematic data, using a clinically motivated objective function.
2 code implementations • 27 Jul 2023 • Walter H. L. Pinaya, Mark S. Graham, Eric Kerfoot, Petru-Daniel Tudosiu, Jessica Dafflon, Virginia Fernandez, Pedro Sanchez, Julia Wolleb, Pedro F. da Costa, Ashay Patel, Hyungjin Chung, Can Zhao, Wei Peng, Zelong Liu, Xueyan Mei, Oeslle Lucena, Jong Chul Ye, Sotirios A. Tsaftaris, Prerna Dogra, Andrew Feng, Marc Modat, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
We have implemented these models in a generalisable fashion, illustrating that their results can be extended to 2D or 3D scenarios, including medical images with different modalities (like CT, MRI, and X-Ray data) and from different anatomical areas.
2 code implementations • 4 Nov 2022 • M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien Ourselin, Andrew Feng
For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e. g. geometry, physiology, physics) of medical data being processed.
1 code implementation • 5 Aug 2022 • Samuel Joutard, Reuben Dorent, Sebastien Ourselin, Tom Vercauteren, Marc Modat
Among the various registration methods proposed for this task, probabilistic displacement registration models estimate displacement distribution for a subset of points by comparing feature vectors of points from the two images.
1 code implementation • 22 Apr 2022 • Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-han Wang, G Anthony Reina, Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J Preetha, Felix Sahm, Klaus Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick, Evan Calabrese, Jeffrey Rudie, Javier Villanueva-Meyer, Soonmee Cha, Madhura Ingalhalikar, Manali Jadhav, Umang Pandey, Jitender Saini, John Garrett, Matthew Larson, Robert Jeraj, Stuart Currie, Russell Frood, Kavi Fatania, Raymond Y Huang, Ken Chang, Carmen Balana, Jaume Capellades, Josep Puig, Johannes Trenkler, Josef Pichler, Georg Necker, Andreas Haunschmidt, Stephan Meckel, Gaurav Shukla, Spencer Liem, Gregory S Alexander, Joseph Lombardo, Joshua D Palmer, Adam E Flanders, Adam P Dicker, Haris I Sair, Craig K Jones, Archana Venkataraman, Meirui Jiang, Tiffany Y So, Cheng Chen, Pheng Ann Heng, Qi Dou, Michal Kozubek, Filip Lux, Jan Michálek, Petr Matula, Miloš Keřkovský, Tereza Kopřivová, Marek Dostál, Václav Vybíhal, Michael A Vogelbaum, J Ross Mitchell, Joaquim Farinhas, Joseph A Maldjian, Chandan Ganesh Bangalore Yogananda, Marco C Pinho, Divya Reddy, James Holcomb, Benjamin C Wagner, Benjamin M Ellingson, Timothy F Cloughesy, Catalina Raymond, Talia Oughourlian, Akifumi Hagiwara, Chencai Wang, Minh-Son To, Sargam Bhardwaj, Chee Chong, Marc Agzarian, Alexandre Xavier Falcão, Samuel B Martins, Bernardo C A Teixeira, Flávia Sprenger, David Menotti, Diego R Lucio, Pamela Lamontagne, Daniel Marcus, Benedikt Wiestler, Florian Kofler, Ivan Ezhov, Marie Metz, Rajan Jain, Matthew Lee, Yvonne W Lui, Richard McKinley, Johannes Slotboom, Piotr Radojewski, Raphael Meier, Roland Wiest, Derrick Murcia, Eric Fu, Rourke Haas, John Thompson, David Ryan Ormond, Chaitra Badve, Andrew E Sloan, Vachan Vadmal, Kristin Waite, Rivka R Colen, Linmin Pei, Murat AK, Ashok Srinivasan, J Rajiv Bapuraj, Arvind Rao, Nicholas Wang, Ota Yoshiaki, Toshio Moritani, Sevcan Turk, Joonsang Lee, Snehal Prabhudesai, Fanny Morón, Jacob Mandel, Konstantinos Kamnitsas, Ben Glocker, Luke V M Dixon, Matthew Williams, Peter Zampakis, Vasileios Panagiotopoulos, Panagiotis Tsiganos, Sotiris Alexiou, Ilias Haliassos, Evangelia I Zacharaki, Konstantinos Moustakas, Christina Kalogeropoulou, Dimitrios M Kardamakis, Yoon Seong Choi, Seung-Koo Lee, Jong Hee Chang, Sung Soo Ahn, Bing Luo, Laila Poisson, Ning Wen, Pallavi Tiwari, Ruchika Verma, Rohan Bareja, Ipsa Yadav, Jonathan Chen, Neeraj Kumar, Marion Smits, Sebastian R van der Voort, Ahmed Alafandi, Fatih Incekara, Maarten MJ Wijnenga, Georgios Kapsas, Renske Gahrmann, Joost W Schouten, Hendrikus J Dubbink, Arnaud JPE Vincent, Martin J van den Bent, Pim J French, Stefan Klein, Yading Yuan, Sonam Sharma, Tzu-Chi Tseng, Saba Adabi, Simone P Niclou, Olivier Keunen, Ann-Christin Hau, Martin Vallières, David Fortin, Martin Lepage, Bennett Landman, Karthik Ramadass, Kaiwen Xu, Silky Chotai, Lola B Chambless, Akshitkumar Mistry, Reid C Thompson, Yuriy Gusev, Krithika Bhuvaneshwar, Anousheh Sayah, Camelia Bencheqroun, Anas Belouali, Subha Madhavan, Thomas C Booth, Alysha Chelliah, Marc Modat, Haris Shuaib, Carmen Dragos, Aly Abayazeed, Kenneth Kolodziej, Michael Hill, Ahmed Abbassy, Shady Gamal, Mahmoud Mekhaimar, Mohamed Qayati, Mauricio Reyes, Ji Eun Park, Jihye Yun, Ho Sung Kim, Abhishek Mahajan, Mark Muzi, Sean Benson, Regina G H Beets-Tan, Jonas Teuwen, Alejandro Herrera-Trujillo, Maria Trujillo, William Escobar, Ana Abello, Jose Bernal, Jhon Gómez, Joseph Choi, Stephen Baek, Yusung Kim, Heba Ismael, Bryan Allen, John M Buatti, Aikaterini Kotrotsou, Hongwei Li, Tobias Weiss, Michael Weller, Andrea Bink, Bertrand Pouymayou, Hassan F Shaykh, Joel Saltz, Prateek Prasanna, Sampurna Shrestha, Kartik M Mani, David Payne, Tahsin Kurc, Enrique Pelaez, Heydy Franco-Maldonado, Francis Loayza, Sebastian Quevedo, Pamela Guevara, Esteban Torche, Cristobal Mendoza, Franco Vera, Elvis Ríos, Eduardo López, Sergio A Velastin, Godwin Ogbole, Dotun Oyekunle, Olubunmi Odafe-Oyibotha, Babatunde Osobu, Mustapha Shu'aibu, Adeleye Dorcas, Mayowa Soneye, Farouk Dako, Amber L Simpson, Mohammad Hamghalam, Jacob J Peoples, Ricky Hu, Anh Tran, Danielle Cutler, Fabio Y Moraes, Michael A Boss, James Gimpel, Deepak Kattil Veettil, Kendall Schmidt, Brian Bialecki, Sailaja Marella, Cynthia Price, Lisa Cimino, Charles Apgar, Prashant Shah, Bjoern Menze, Jill S Barnholtz-Sloan, Jason Martin, Spyridon Bakas
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data.
no code implementations • 15 Mar 2022 • Samuel Joutard, Thomas Pheiffer, Chloe Audigier, Patrick Wohlfahrt, Reuben Dorent, Sebastien Piat, Tom Vercauteren, Marc Modat, Tommaso Mansi
Registering CT images of the chest is a crucial step for several tasks such as disease progression tracking or surgical planning.
no code implementations • 23 Feb 2022 • Mauricio Orbes-Arteaga, Thomas Varsavsky, Lauge Sorensen, Mads Nielsen, Akshay Pai, Sebastien Ourselin, Marc Modat, M Jorge Cardoso
The insertion of deep learning in medical image analysis had lead to the development of state-of-the art strategies in several applications such a disease classification, as well as abnormality detection and segmentation.
3 code implementations • 8 Jan 2022 • Reuben Dorent, Aaron Kujawa, Marina Ivory, Spyridon Bakas, Nicola Rieke, Samuel Joutard, Ben Glocker, Jorge Cardoso, Marc Modat, Kayhan Batmanghelich, Arseniy Belkov, Maria Baldeon Calisto, Jae Won Choi, Benoit M. Dawant, Hexin Dong, Sergio Escalera, Yubo Fan, Lasse Hansen, Mattias P. Heinrich, Smriti Joshi, Victoriya Kashtanova, Hyeon Gyu Kim, Satoshi Kondo, Christian N. Kruse, Susana K. Lai-Yuen, Hao Li, Han Liu, Buntheng Ly, Ipek Oguz, Hyungseob Shin, Boris Shirokikh, Zixian Su, Guotai Wang, Jianghao Wu, Yanwu Xu, Kai Yao, Li Zhang, Sebastien Ourselin, Jonathan Shapey, Tom Vercauteren
The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137).
no code implementations • 8 Dec 2021 • Alessa Hering, Lasse Hansen, Tony C. W. Mok, Albert C. S. Chung, Hanna Siebert, Stephanie Häger, Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao, Sulaiman Vesal, Mirabela Rusu, Geoffrey Sonn, Théo Estienne, Maria Vakalopoulou, Luyi Han, Yunzhi Huang, Pew-Thian Yap, Mikael Brudfors, Yaël Balbastre, Samuel Joutard, Marc Modat, Gal Lifshitz, Dan Raviv, Jinxin Lv, Qiang Li, Vincent Jaouen, Dimitris Visvikis, Constance Fourcade, Mathieu Rubeaux, Wentao Pan, Zhe Xu, Bailiang Jian, Francesca De Benetti, Marek Wodzinski, Niklas Gunnarsson, Jens Sjölund, Daniel Grzech, Huaqi Qiu, Zeju Li, Alexander Thorley, Jinming Duan, Christoph Großbröhmer, Andrew Hoopes, Ingerid Reinertsen, Yiming Xiao, Bennett Landman, Yuankai Huo, Keelin Murphy, Nikolas Lessmann, Bram van Ginneken, Adrian V. Dalca, Mattias P. Heinrich
Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed.
1 code implementation • 1 Dec 2021 • Da Ma, Manuel J Cardoso, Maria A Zuluaga, Marc Modat, Nick M Powell, Frances K Wiseman, Jon O Cleary, Benjamin Sinclair, Ian F Harrison, Bernard Siow, Karteek Popuri, Sieun Lee, Joanne A Matsubara, Marinko V Sarunic, Mirza Faisal Beg, Victor L J Tybulewicz, Elizabeth M C Fisher, Mark F Lythgoe, Sebastien Ourselin
Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules.
1 code implementation • 1 Jul 2021 • Reuben Dorent, Samuel Joutard, Jonathan Shapey, Aaron Kujawa, Marc Modat, Sebastien Ourselin, Tom Vercauteren
We introduce $\textit{InExtremIS}$, a weakly supervised 3D approach to train a deep image segmentation network using particularly weak train-time annotations: only 6 extreme clicks at the boundary of the objects of interest.
1 code implementation • 30 Apr 2021 • Adrià Casamitjana, Marco Lorenzi, Sebastiano Ferraris, Loc Peter, Marc Modat, Allison Stevens, Bruce Fischl, Tom Vercauteren, Juan Eugenio Iglesias
The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images.
no code implementations • 15 Apr 2021 • Thomas Booth, Bernice Akpinar, Andrei Roman, Haris Shuaib, Aysha Luis, Alysha Chelliah, Ayisha Al Busaidi, Ayesha Mirchandani, Burcu Alparslan, Nina Mansoor, Keyoumars Ashkan, Sebastien Ourselin, Marc Modat
The small numbers of patient included in studies, the high risk of bias and concerns of applicability in the study designs (particularly in relation to the reference standard and patient selection due to confounding), and the low level of evidence, suggest that limited conclusions can be drawn from the data.
1 code implementation • 21 Mar 2021 • Marta B. M. Ranzini, Lucas Fidon, Sébastien Ourselin, Marc Modat, Tom Vercauteren
In this work, we aim at improving the fetal brain segmentation for SRR in Spina Bifida.
no code implementations • 16 Jan 2021 • M. Jorge Cardoso, Marc Modat, Tom Vercauteren, Sebastien Ourselin
Imaging devices exploit the Nyquist-Shannon sampling theorem to avoid both aliasing and redundant oversampling by design.
1 code implementation • 2 Nov 2020 • Benjamin Murray, Eric Kerfoot, Mark S. Graham, Carole H. Sudre, Erika Molteni, Liane S. Canas, Michela Antonelli, Kerstin Klaser, Alessia Visconti, Andrew T. Chan, Paul W. Franks, Richard Davies, Jonathan Wolf, Tim Spector, Claire J. Steves, Marc Modat, Sebastien Ourselin
We present ExeTera, an open source data curation software designed to address scalability challenges and to enable reproducible research across an international research group for datasets such as the Covid Symptom Study dataset.
1 code implementation • 7 Jul 2020 • Reuben Dorent, Samuel Joutard, Jonathan Shapey, Sotirios Bisdas, Neil Kitchen, Robert Bradford, Shakeel Saeed, Marc Modat, Sebastien Ourselin, Tom Vercauteren
Instead of requiring detailed but time-consuming annotations, scribbles on the target domain are used to perform domain adaptation.
no code implementations • 20 Apr 2020 • Marta B. M. Ranzini, Irme Groothuis, Kerstin Kläser, M. Jorge Cardoso, Johann Henckel, Sébastien Ourselin, Alister Hart, Marc Modat
Metal artefact reduction (MAR) techniques aim at removing metal-induced noise from clinical images.
no code implementations • 22 Dec 2019 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, Marc Modat, M. Jorge Cardoso, Sebastien Ourselin, Lauge Sorensen
Weight initialization is important for faster convergence and stability of deep neural networks training.
no code implementations • 16 Aug 2019 • Mauricio Orbes-Arteaga, Jorge Cardoso, Lauge Sørensen, Christian Igel, Sebastien Ourselin, Marc Modat, Mads Nielsen, Akshay Pai
As a result, their performance is significantly lower on data from unseen sources compared to the performance on data from the same source as the training data.
no code implementations • 16 Aug 2019 • Mauricio Orbes-Arteaga, Thomas Varsavsky, Carole H. Sudre, Zach Eaton-Rosen, Lewis J. Haddow, Lauge Sørensen, Mads Nielsen, Akshay Pai, Sébastien Ourselin, Marc Modat, Parashkev Nachev, M. Jorge Cardoso
Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to $n$ target domains (as long as there is paired data covering all domains).
no code implementations • 14 Aug 2019 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, Marc Modat, M. Jorge Cardoso, Sébastien Ourselin, Lauge Sørensen
Different M-estimators and logistic functions, including a novel type proposed in this study, called modified Stannard, are evaluated on the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for robust modeling of volumetric MRI and PET biomarkers, CSF measurements, as well as cognitive tests.
1 code implementation • 25 Jul 2019 • Reuben Dorent, Samuel Joutard, Marc Modat, Sébastien Ourselin, Tom Vercauteren
We propose a new deep learning method for tumour segmentation when dealing with missing imaging modalities.
1 code implementation • 1 Jul 2019 • Samuel Joutard, Reuben Dorent, Amanda Isaac, Sebastien Ourselin, Tom Vercauteren, Marc Modat
Medical image processing tasks such as segmentation often require capturing non-local information.
no code implementations • 17 Mar 2019 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Lauge Sørensen
The proposed LSTM algorithm is applied to model the progression of Alzheimer's disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i. e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method.
1 code implementation • 8 Jan 2019 • Da Ma, Manuel J. Cardoso, Maria A. Zuluaga, Marc Modat, Nick. Powell, Frances Wiseman, Victor Tybulewicz, Elizabeth Fisher, Mark. F. Lythgoe, Sebastien Ourselin
In this work, we introduce a framework to extract the Purkinje layer within the grey matter, enabling the estimation of the thickness of the cerebellar grey matter, the granular layer and molecular layer from gadolinium-enhanced ex vivo mouse brain MRI.
no code implementations • 3 Oct 2018 • Mauricio Orbes Arteaga, Lauge Sørensen, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Stefan Sommer, Mads Nielsen, Christian Igel, Akshay Pai
For proper generalization performance of convolutional neural networks (CNNs) in medical image segmentation, the learnt features should be invariant under particular non-linear shape variations of the input.
no code implementations • 22 Aug 2018 • Kerstin Kläser, Pawel Markiewicz, Marta Ranzini, Wenqi Li, Marc Modat, Brian F. Hutton, David Atkinson, Kris Thielemans, M. Jorge Cardoso, Sebastien Ourselin
Attenuation correction is an essential requirement of positron emission tomography (PET) image reconstruction to allow for accurate quantification.
no code implementations • 20 Aug 2018 • Mauricio Orbes-Arteaga, M. Jorge Cardoso, Lauge Sørensen, Marc Modat, Sébastien Ourselin, Mads Nielsen, Akshay Pai
Segmenting vascular pathologies such as white matter lesions in Brain magnetic resonance images (MRIs) require acquisition of multiple sequences such as T1-weighted (T1-w) --on which lesions appear hypointense-- and fluid attenuated inversion recovery (FLAIR) sequence --where lesions appear hyperintense--.
no code implementations • 16 Aug 2018 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Lauge Sørensen
This paper shows that built-in handling of missing values in LSTM network training paves the way for application of RNNs in disease progression modeling.
no code implementations • 9 Jul 2018 • Yipeng Hu, Marc Modat, Eli Gibson, Wenqi Li, Nooshin Ghavami, Ester Bonmati, Guotai Wang, Steven Bandula, Caroline M. Moore, Mark Emberton, Sébastien Ourselin, J. Alison Noble, Dean C. Barratt, Tom Vercauteren
A median target registration error of 3. 6 mm on landmark centroids and a median Dice of 0. 87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
no code implementations • 16 Jan 2018 • Juan Eugenio Iglesias, Marc Modat, Loic Peter, Allison Stevens, Roberto Annunziata, Tom Vercauteren, Ed Lein, Bruce Fischl, Sebastien Ourselin
Here, we overcome this limitation with a probabilistic method that simultaneously solves for registration and synthesis directly on the target images, without any training data.
1 code implementation • 5 Nov 2017 • Yipeng Hu, Marc Modat, Eli Gibson, Nooshin Ghavami, Ester Bonmati, Caroline M. Moore, Mark Emberton, J. Alison Noble, Dean C. Barratt, Tom Vercauteren
Spatially aligning medical images from different modalities remains a challenging task, especially for intraoperative applications that require fast and robust algorithms.
10 code implementations • 11 Sep 2017 • Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I. Shakir, Guotai Wang, Zach Eaton-Rosen, Robert Gray, Tom Doel, Yipeng Hu, Tom Whyntie, Parashkev Nachev, Marc Modat, Dean C. Barratt, Sébastien Ourselin, M. Jorge Cardoso, Tom Vercauteren
NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications.
no code implementations • 27 Aug 2017 • Jonas Pichat, Juan Eugenio Iglesias, Sotiris Nousias, Tarek Yousry, Sebastien Ourselin, Marc Modat
We propose here a novel automatic approach to the joint problem of multimodal registration between histology and MRI, when only a fraction of tissue is available from histology.
1 code implementation • 27 Jan 2014 • Da Ma, Manuel J. Cardoso, Marc Modat, Nick Powell, Jack Wells, Holly Holmes, Frances Wiseman, Victor Tybulewicz, Elizabeth Fisher, Mark F. Lythgoe, Sébastien Ourselin
The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy.