1 code implementation • 25 Jul 2024 • Zhiyuan Sun, Haochen Shi, Marc-Alexandre Côté, Glen Berseth, Xingdi Yuan, Bang Liu
Large language models (LLMs) have been increasingly applied to tasks in language understanding and interactive decision-making, with their impressive performance largely attributed to the extensive domain knowledge embedded within them.
1 code implementation • 12 Jul 2024 • Shrestha Mohanty, Negar Arabzadeh, Andrea Tupini, Yuxuan Sun, Alexey Skrynnik, Artem Zholus, Marc-Alexandre Côté, Julia Kiseleva
Seamless interaction between AI agents and humans using natural language remains a key goal in AI research.
1 code implementation • 10 Jun 2024 • Peter Jansen, Marc-Alexandre Côté, Tushar Khot, Erin Bransom, Bhavana Dalvi Mishra, Bodhisattwa Prasad Majumder, Oyvind Tafjord, Peter Clark
However, developing and evaluating an AI agent's capacity for end-to-end scientific reasoning is challenging as running real-world experiments is often prohibitively expensive or infeasible.
no code implementations • 10 Jun 2024 • Ruoyao Wang, Graham Todd, Ziang Xiao, Xingdi Yuan, Marc-Alexandre Côté, Peter Clark, Peter Jansen
Can current language models themselves serve as world simulators, correctly predicting how actions change different world states, thus bypassing the need for extensive manual coding?
no code implementations • 5 Mar 2024 • Haochen Shi, Zhiyuan Sun, Xingdi Yuan, Marc-Alexandre Côté, Bang Liu
Embodied Instruction Following (EIF) is a crucial task in embodied learning, requiring agents to interact with their environment through egocentric observations to fulfill natural language instructions.
no code implementations • 26 Feb 2024 • Haotian Fu, Pratyusha Sharma, Elias Stengel-Eskin, George Konidaris, Nicolas Le Roux, Marc-Alexandre Côté, Xingdi Yuan
We present an algorithm for skill discovery from expert demonstrations.
1 code implementation • 12 Feb 2024 • Victor Zhong, Dipendra Misra, Xingdi Yuan, Marc-Alexandre Côté
We introduce Language Feedback Models (LFMs) that identify desirable behaviour - actions that help achieve tasks specified in the instruction - for imitation learning in instruction following.
1 code implementation • NeurIPS 2023 • Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang Xiao, Arian Hosseini, Friederike Niedtner, Nicolas Le Roux
Thus, they can be seen as stochastic language layers in a language network, where the learnable parameters are the natural language prompts at each layer.
1 code implementation • 24 May 2023 • Ruoyao Wang, Graham Todd, Eric Yuan, Ziang Xiao, Marc-Alexandre Côté, Peter Jansen
In this work, we investigate the capacity of language models to generate explicit, interpretable, and interactive world models of scientific and common-sense reasoning tasks.
no code implementations • 21 May 2023 • Cédric Colas, Laetitia Teodorescu, Pierre-Yves Oudeyer, Xingdi Yuan, Marc-Alexandre Côté
Without relying on any hand-coded goal representations, reward functions or curriculum, we show that LMA3 agents learn to master a large diversity of skills in a task-agnostic text-based environment.
no code implementations • 10 Feb 2023 • Laetitia Teodorescu, Xingdi Yuan, Marc-Alexandre Côté, Pierre-Yves Oudeyer
We show the importance of selectivity from the social peer's feedback; that experience replay needs to over-sample examples of rare goals; and that following self-generated goal sequences where the agent's competence is intermediate leads to significant improvements in final performance.
2 code implementations • 12 Nov 2022 • Shrestha Mohanty, Negar Arabzadeh, Milagro Teruel, Yuxuan Sun, Artem Zholus, Alexey Skrynnik, Mikhail Burtsev, Kavya Srinet, Aleksandr Panov, Arthur Szlam, Marc-Alexandre Côté, Julia Kiseleva
Human intelligence can remarkably adapt quickly to new tasks and environments.
1 code implementation • 1 Nov 2022 • Alexey Skrynnik, Zoya Volovikova, Marc-Alexandre Côté, Anton Voronov, Artem Zholus, Negar Arabzadeh, Shrestha Mohanty, Milagro Teruel, Ahmed Awadallah, Aleksandr Panov, Mikhail Burtsev, Julia Kiseleva
The adoption of pre-trained language models to generate action plans for embodied agents is a promising research strategy.
1 code implementation • 13 Oct 2022 • Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, Prithviraj Ammanabrolu
In this work, we explore techniques for augmenting interactive agents with information from symbolic modules, much like humans use tools like calculators and GPS systems to assist with arithmetic and navigation.
2 code implementations • 1 Aug 2022 • Peter A. Jansen, Marc-Alexandre Côté
Text-based games offer a challenging test bed to evaluate virtual agents at language understanding, multi-step problem-solving, and common-sense reasoning.
no code implementations • NAACL (Wordplay) 2022 • Laetitia Teodorescu, Eric Yuan, Marc-Alexandre Côté, Pierre-Yves Oudeyer
In this extended abstract we discuss the opportunities and challenges of studying intrinsically-motivated agents for exploration in textual environments.
1 code implementation • 27 May 2022 • Julia Kiseleva, Alexey Skrynnik, Artem Zholus, Shrestha Mohanty, Negar Arabzadeh, Marc-Alexandre Côté, Mohammad Aliannejadi, Milagro Teruel, Ziming Li, Mikhail Burtsev, Maartje ter Hoeve, Zoya Volovikova, Aleksandr Panov, Yuxuan Sun, Kavya Srinet, Arthur Szlam, Ahmed Awadallah
Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions.
no code implementations • 12 May 2022 • Iou-Jen Liu, Xingdi Yuan, Marc-Alexandre Côté, Pierre-Yves Oudeyer, Alexander G. Schwing
In order to study how agents can be taught to query external knowledge via language, we first introduce two new environments: the grid-world-based Q-BabyAI and the text-based Q-TextWorld.
no code implementations • 5 May 2022 • Julia Kiseleva, Ziming Li, Mohammad Aliannejadi, Shrestha Mohanty, Maartje ter Hoeve, Mikhail Burtsev, Alexey Skrynnik, Artem Zholus, Aleksandr Panov, Kavya Srinet, Arthur Szlam, Yuxuan Sun, Marc-Alexandre Côté, Katja Hofmann, Ahmed Awadallah, Linar Abdrazakov, Igor Churin, Putra Manggala, Kata Naszadi, Michiel van der Meer, Taewoon Kim
The primary goal of the competition is to approach the problem of how to build interactive agents that learn to solve a task while provided with grounded natural language instructions in a collaborative environment.
1 code implementation • 14 Mar 2022 • Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, Prithviraj Ammanabrolu
We present ScienceWorld, a benchmark to test agents' scientific reasoning abilities in a new interactive text environment at the level of a standard elementary school science curriculum.
no code implementations • 9 Mar 2022 • Nathaniel Weir, Xingdi Yuan, Marc-Alexandre Côté, Matthew Hausknecht, Romain Laroche, Ida Momennejad, Harm van Seijen, Benjamin Van Durme
Humans have the capability, aided by the expressive compositionality of their language, to learn quickly by demonstration.
2 code implementations • 8 Oct 2020 • Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, Matthew Hausknecht
ALFWorld enables the creation of a new BUTLER agent whose abstract knowledge, learned in TextWorld, corresponds directly to concrete, visually grounded actions.
1 code implementation • NeurIPS 2020 • Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan Liu, Jian Tang
Graph neural networks (GNNs) have been attracting increasing popularity due to their simplicity and effectiveness in a variety of fields.
1 code implementation • NeurIPS 2020 • Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikuláš Zelinka, Marc-Antoine Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, William L. Hamilton
Playing text-based games requires skills in processing natural language and sequential decision making.
1 code implementation • 21 Oct 2019 • Mikuláš Zelinka, Xingdi Yuan, Marc-Alexandre Côté, Romain Laroche, Adam Trischler
We are interested in learning how to update Knowledge Graphs (KG) from text.
4 code implementations • 11 Sep 2019 • Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, Xingdi Yuan
A hallmark of human intelligence is the ability to understand and communicate with language.
7 code implementations • NeurIPS 2019 • Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, R. Devon Hjelm
State representation learning, or the ability to capture latent generative factors of an environment, is crucial for building intelligent agents that can perform a wide variety of tasks.
1 code implementation • 3 Dec 2018 • Ruo Yu Tao, Marc-Alexandre Côté, Xingdi Yuan, Layla El Asri
To solve a text-based game, an agent needs to formulate valid text commands for a given context and find the ones that lead to success.
1 code implementation • CONLL 2018 • Ákos Kádár, Desmond Elliott, Marc-Alexandre Côté, Grzegorz Chrupała, Afra Alishahi
Recent work has shown how to learn better visual-semantic embeddings by leveraging image descriptions in more than one language.
no code implementations • COLING 2018 • Ákos Kádár, Marc-Alexandre Côté, Grzegorz Chrupała, Afra Alishahi
Hierarchical Multiscale LSTM (Chung et al., 2016a) is a state-of-the-art language model that learns interpretable structure from character-level input.
1 code implementation • 29 Jun 2018 • Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, Adam Trischler
We introduce TextWorld, a sandbox learning environment for the training and evaluation of RL agents on text-based games.
2 code implementations • 29 Jun 2018 • Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sordoni, Romain Laroche, Remi Tachet des Combes, Matthew Hausknecht, Adam Trischler
We propose a recurrent RL agent with an episodic exploration mechanism that helps discovering good policies in text-based game environments.
1 code implementation • NeurIPS 2017 • Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Côté, Nan Rosemary Ke, Yoshua Bengio
Stochastic recurrent models have been successful in capturing the variability observed in natural sequential data such as speech.
1 code implementation • 9 May 2016 • The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang
Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements.
3 code implementations • 7 May 2016 • Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, Hugo Larochelle
We present Neural Autoregressive Distribution Estimation (NADE) models, which are neural network architectures applied to the problem of unsupervised distribution and density estimation.
1 code implementation • 9 Feb 2015 • Marc-Alexandre Côté, Hugo Larochelle
We present a mathematical construction for the restricted Boltzmann machine (RBM) that doesn't require specifying the number of hidden units.