no code implementations • ICLR 2021 • Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
In recent years, reinforcement learning (RL) has been successfully applied to many different continuous control tasks.
1 code implementation • 10 Jun 2020 • Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
In recent years, on-policy reinforcement learning (RL) has been successfully applied to many different continuous control tasks.
2 code implementations • ICLR 2020 • Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, Marcin Michalski
We present a modern scalable reinforcement learning agent called SEED (Scalable, Efficient Deep-RL).
2 code implementations • arXiv 2020 • Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, Neil Houlsby
And, how close are we to general visual representations?
Ranked #9 on
Image Classification
on VTAB-1k
(using extra training data)
no code implementations • 25 Sep 2019 • Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, Neil Houlsby
Representation learning promises to unlock deep learning for the long tail of vision tasks without expansive labelled datasets.
1 code implementation • 25 Jul 2019 • Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, Sylvain Gelly
Recent progress in the field of reinforcement learning has been accelerated by virtual learning environments such as video games, where novel algorithms and ideas can be quickly tested in a safe and reproducible manner.
no code implementations • ICLR 2019 • Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly
Generative adversarial networks (GANs) are a class of deep generative models which aim to learn a target distribution in an unsupervised fashion.
no code implementations • ICLR Workshop DeepGenStruct 2019 • Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, Sylvain Gelly
While recent generative models of video have had some success, current progress is hampered by the lack of qualitative metrics that consider visual quality, temporal coherence, and diversity of samples.
2 code implementations • 3 Dec 2018 • Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, Sylvain Gelly
To this extent we propose Fr\'{e}chet Video Distance (FVD), a new metric for generative models of video, and StarCraft 2 Videos (SCV), a benchmark of game play from custom starcraft 2 scenarios that challenge the current capabilities of generative models of video.
5 code implementations • ICLR 2019 • Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly
Generative adversarial networks (GANs) are a class of deep generative models which aim to learn a target distribution in an unsupervised fashion.
no code implementations • 29 Mar 2018 • Sylvain Gelly, Karol Kurach, Marcin Michalski, Xiaohua Zhai
We propose a new learning paradigm called Deep Memory.
9 code implementations • NeurIPS 2018 • Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet
Generative adversarial networks (GAN) are a powerful subclass of generative models.