no code implementations • 5 Dec 2024 • Zaid Alyafeai, Michael Pieler, Hannah Teufel, Jonathan Tow, Marco Bellagente, Duy Phung, Nikhil Pinnaparaju, Reshinth Adithyan, Paulo Rocha, Maksym Zhuravinskyi, Carlos Riquelme
Our Arabic Stable LM 1. 6B chat model achieves impressive results on several benchmarks beating multiple models with up to 8x the parameters.
no code implementations • 28 Oct 2024 • Michael Pieler, Marco Bellagente, Hannah Teufel, Duy Phung, Nathan Cooper, Jonathan Tow, Paulo Rocha, Reshinth Adithyan, Zaid Alyafeai, Nikhil Pinnaparaju, Maksym Zhuravinskyi, Carlos Riquelme
In addition, we provide a detailed study of our pipeline, investigating the choice of the base dataset and LLM for the rephrasing, as well as the relationship between the model size and the performance after pre-training.
no code implementations • 1 Apr 2024 • Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, Jonathan Tow, James Baicoianu, Ashish Datta, Maksym Zhuravinskyi, Dakota Mahan, Marco Bellagente, Carlos Riquelme, Nathan Cooper
Stable Code Instruct also exhibits state-of-the-art performance on the MT-Bench coding tasks and on Multi-PL completion compared to other instruction tuned models.
1 code implementation • 27 Feb 2024 • Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi, Reshinth Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, Meng Lee, Emad Mostaque, Michael Pieler, Nikhil Pinnaparju, Paulo Rocha, Harry Saini, Hannah Teufel, Niccolo Zanichelli, Carlos Riquelme
We introduce StableLM 2 1. 6B, the first in a new generation of our language model series.
1 code implementation • NeurIPS 2023 • Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi Zhang, Deepak Narayanan, Hannah Benita Teufel, Marco Bellagente, Minguk Kang, Taesung Park, Jure Leskovec, Jun-Yan Zhu, Li Fei-Fei, Jiajun Wu, Stefano Ermon, Percy Liang
The stunning qualitative improvement of recent text-to-image models has led to their widespread attention and adoption.
no code implementations • 19 Oct 2023 • Herbie Bradley, Andrew Dai, Hannah Teufel, Jenny Zhang, Koen Oostermeijer, Marco Bellagente, Jeff Clune, Kenneth Stanley, Grégory Schott, Joel Lehman
In many text-generation problems, users may prefer not only a single response, but a diverse range of high-quality outputs from which to choose.
1 code implementation • NeurIPS 2023 • Marco Bellagente, Manuel Brack, Hannah Teufel, Felix Friedrich, Björn Deiseroth, Constantin Eichenberg, Andrew Dai, Robert Baldock, Souradeep Nanda, Koen Oostermeijer, Andres Felipe Cruz-Salinas, Patrick Schramowski, Kristian Kersting, Samuel Weinbach
The recent popularity of text-to-image diffusion models (DM) can largely be attributed to the intuitive interface they provide to users.
no code implementations • 6 Dec 2022 • Samuel Weinbach, Marco Bellagente, Constantin Eichenberg, Andrew Dai, Robert Baldock, Souradeep Nanda, Björn Deiseroth, Koen Oostermeijer, Hannah Teufel, Andres Felipe Cruz-Salinas
We introduce M-VADER: a diffusion model (DM) for image generation where the output can be specified using arbitrary combinations of images and text.
1 code implementation • 1 Jun 2021 • Ramon Winterhalder, Marco Bellagente, Benjamin Nachman
Deep generative models are becoming widely used across science and industry for a variety of purposes.