no code implementations • 28 Oct 2024 • Claudius Krause, Michele Faucci Giannelli, Gregor Kasieczka, Benjamin Nachman, Dalila Salamani, David Shih, Anna Zaborowska, Oz Amram, Kerstin Borras, Matthew R. Buckley, Erik Buhmann, Thorsten Buss, Renato Paulo Da Costa Cardoso, Anthony L. Caterini, Nadezda Chernyavskaya, Federico A. G. Corchia, Jesse C. Cresswell, Sascha Diefenbacher, Etienne Dreyer, Vijay Ekambaram, Engin Eren, Florian Ernst, Luigi Favaro, Matteo Franchini, Frank Gaede, Eilam Gross, Shih-Chieh Hsu, Kristina Jaruskova, Benno Käch, Jayant Kalagnanam, Raghav Kansal, Taewoo Kim, Dmitrii Kobylianskii, Anatolii Korol, William Korcari, Dirk Krücker, Katja Krüger, Marco Letizia, Shu Li, Qibin Liu, Xiulong Liu, Gabriel Loaiza-Ganem, Thandikire Madula, Peter McKeown, Isabell-A. Melzer-Pellmann, Vinicius Mikuni, Nam Nguyen, Ayodele Ore, Sofia Palacios Schweitzer, Ian Pang, Kevin Pedro, Tilman Plehn, Witold Pokorski, Huilin Qu, Piyush Raikwar, John A. Raine, Humberto Reyes-Gonzalez, Lorenzo Rinaldi, Brendan Leigh Ross, Moritz A. W. Scham, Simon Schnake, Chase Shimmin, Eli Shlizerman, Nathalie Soybelman, Mudhakar Srivatsa, Kalliopi Tsolaki, Sofia Vallecorsa, Kyongmin Yeo, Rui Zhang
We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge.
no code implementations • 24 Sep 2024 • Samuele Grossi, Marco Letizia, Riccardo Torre
We propose a robust methodology to evaluate the performance and computational efficiency of non-parametric two-sample tests, specifically designed for high-dimensional generative models in scientific applications such as in particle physics.
1 code implementation • 22 Aug 2024 • Gaia Grosso, Marco Letizia
In this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies.
1 code implementation • 23 May 2023 • Gaia Grosso, Marco Letizia, Maurizio Pierini, Andrea Wulzer
The Neyman-Pearson strategy for hypothesis testing can be employed for goodness of fit if the alternative hypothesis is selected from data by exploring a rich parametrised family of models, while controlling the impact of statistical fluctuations.
no code implementations • 9 Mar 2023 • Gaia Grosso, Nicolò Lai, Marco Letizia, Jacopo Pazzini, Marco Rando, Lorenzo Rosasco, Andrea Wulzer, Marco Zanetti
We here propose a machine learning approach for monitoring particle detectors in real-time.
1 code implementation • 23 Feb 2023 • Andrea Coccaro, Marco Letizia, Humberto Reyes-Gonzalez, Riccardo Torre
Normalizing Flows have emerged as a powerful brand of generative models, as they not only allow for efficient sampling of complicated target distributions, but also deliver density estimation by construction.
1 code implementation • 23 Nov 2022 • Jesse C. Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto Reyes-Gonzalez, Marco Letizia, Anthony L. Caterini
Precision measurements and new physics searches at the Large Hadron Collider require efficient simulations of particle propagation and interactions within the detectors.
no code implementations • 14 Sep 2022 • Paolo Didier Alfano, Marco Rando, Marco Letizia, Francesca Odone, Lorenzo Rosasco, Vito Paolo Pastore
We compare our method with state-of-the-art unsupervised approaches, where a set of pre-defined hand-crafted features is used for clustering of plankton images.
no code implementations • 5 Apr 2022 • Marco Letizia, Gianvito Losapio, Marco Rando, Gaia Grosso, Andrea Wulzer, Maurizio Pierini, Marco Zanetti, Lorenzo Rosasco
We present a machine learning approach for model-independent new physics searches.