no code implementations • 27 May 2024 • Leo Hoshikawa, Marcos V. Conde, Takeshi Ohashi, Atsushi Irie
The fundamental idea is to represent a signal as a continuous and differentiable neural network.
no code implementations • 25 Apr 2024 • Xiaohong Liu, Xiongkuo Min, Guangtao Zhai, Chunyi Li, Tengchuan Kou, Wei Sun, HaoNing Wu, Yixuan Gao, Yuqin Cao, ZiCheng Zhang, Xiele Wu, Radu Timofte, Fei Peng, Huiyuan Fu, Anlong Ming, Chuanming Wang, Huadong Ma, Shuai He, Zifei Dou, Shu Chen, Huacong Zhang, Haiyi Xie, Chengwei Wang, Baoying Chen, Jishen Zeng, Jianquan Yang, Weigang Wang, Xi Fang, Xiaoxin Lv, Jun Yan, Tianwu Zhi, Yabin Zhang, Yaohui Li, Yang Li, Jingwen Xu, Jianzhao Liu, Yiting Liao, Junlin Li, Zihao Yu, Yiting Lu, Xin Li, Hossein Motamednia, S. Farhad Hosseini-Benvidi, Fengbin Guan, Ahmad Mahmoudi-Aznaveh, Azadeh Mansouri, Ganzorig Gankhuyag, Kihwan Yoon, Yifang Xu, Haotian Fan, Fangyuan Kong, Shiling Zhao, Weifeng Dong, Haibing Yin, Li Zhu, Zhiling Wang, Bingchen Huang, Avinab Saha, Sandeep Mishra, Shashank Gupta, Rajesh Sureddi, Oindrila Saha, Luigi Celona, Simone Bianco, Paolo Napoletano, Raimondo Schettini, Junfeng Yang, Jing Fu, Wei zhang, Wenzhi Cao, Limei Liu, Han Peng, Weijun Yuan, Zhan Li, Yihang Cheng, Yifan Deng, Haohui Li, Bowen Qu, Yao Li, Shuqing Luo, Shunzhou Wang, Wei Gao, Zihao Lu, Marcos V. Conde, Xinrui Wang, Zhibo Chen, Ruling Liao, Yan Ye, Qiulin Wang, Bing Li, Zhaokun Zhou, Miao Geng, Rui Chen, Xin Tao, Xiaoyu Liang, Shangkun Sun, Xingyuan Ma, Jiaze Li, Mengduo Yang, Haoran Xu, Jie zhou, Shiding Zhu, Bohan Yu, Pengfei Chen, Xinrui Xu, Jiabin Shen, Zhichao Duan, Erfan Asadi, Jiahe Liu, Qi Yan, Youran Qu, Xiaohui Zeng, Lele Wang, Renjie Liao
A total of 196 participants have registered in the video track.
2 code implementations • 25 Apr 2024 • Marcos V. Conde, Zhijun Lei, Wen Li, Cosmin Stejerean, Ioannis Katsavounidis, Radu Timofte, Kihwan Yoon, Ganzorig Gankhuyag, Jiangtao Lv, Long Sun, Jinshan Pan, Jiangxin Dong, Jinhui Tang, Zhiyuan Li, Hao Wei, Chenyang Ge, Dongyang Zhang, Tianle Liu, Huaian Chen, Yi Jin, Menghan Zhou, Yiqiang Yan, Si Gao, Biao Wu, Shaoli Liu, Chengjian Zheng, Diankai Zhang, Ning Wang, Xintao Qiu, Yuanbo Zhou, Kongxian Wu, Xinwei Dai, Hui Tang, Wei Deng, Qingquan Gao, Tong Tong, Jae-Hyeon Lee, Ui-Jin Choi, Min Yan, Xin Liu, Qian Wang, Xiaoqian Ye, Zhan Du, Tiansen Zhang, Long Peng, Jiaming Guo, Xin Di, Bohao Liao, Zhibo Du, Peize Xia, Renjing Pei, Yang Wang, Yang Cao, ZhengJun Zha, Bingnan Han, Hongyuan Yu, Zhuoyuan Wu, Cheng Wan, Yuqing Liu, Haodong Yu, Jizhe Li, Zhijuan Huang, Yuan Huang, Yajun Zou, Xianyu Guan, Qi Jia, Heng Zhang, Xuanwu Yin, Kunlong Zuo, Hyeon-Cheol Moon, Tae-hyun Jeong, Yoonmo Yang, Jae-Gon Kim, Jinwoo Jeong, Sunjei Kim
This paper introduces a novel benchmark as part of the AIS 2024 Real-Time Image Super-Resolution (RTSR) Challenge, which aims to upscale compressed images from 540p to 4K resolution (4x factor) in real-time on commercial GPUs.
1 code implementation • 24 Apr 2024 • Marcos V. Conde, Saman Zadtootaghaj, Nabajeet Barman, Radu Timofte, Chenlong He, Qi Zheng, Ruoxi Zhu, Zhengzhong Tu, Haiqiang Wang, Xiangguang Chen, Wenhui Meng, Xiang Pan, Huiying Shi, Han Zhu, Xiaozhong Xu, Lei Sun, Zhenzhong Chen, Shan Liu, ZiCheng Zhang, HaoNing Wu, Yingjie Zhou, Chunyi Li, Xiaohong Liu, Weisi Lin, Guangtao Zhai, Wei Sun, Yuqin Cao, Yanwei Jiang, Jun Jia, Zhichao Zhang, Zijian Chen, Weixia Zhang, Xiongkuo Min, Steve Göring, Zihao Qi, Chen Feng
The performance of the top-5 submissions is reviewed and provided here as a survey of diverse deep models for efficient video quality assessment of user-generated content.
1 code implementation • 24 Apr 2024 • Marcos V. Conde, Florin-Alexandru Vasluianu, Radu Timofte, Jianxing Zhang, Jia Li, Fan Wang, Xiaopeng Li, Zikun Liu, Hyunhee Park, Sejun Song, Changho Kim, Zhijuan Huang, Hongyuan Yu, Cheng Wan, Wending Xiang, Jiamin Lin, Hang Zhong, Qiaosong Zhang, Yue Sun, Xuanwu Yin, Kunlong Zuo, Senyan Xu, Siyuan Jiang, Zhijing Sun, Jiaying Zhu, Liangyan Li, Ke Chen, Yunzhe Li, Yimo Ning, Guanhua Zhao, Jun Chen, Jinyang Yu, Kele Xu, Qisheng Xu, Yong Dou
This paper reviews the NTIRE 2024 RAW Image Super-Resolution Challenge, highlighting the proposed solutions and results.
3 code implementations • 22 Apr 2024 • Xiaoning Liu, Zongwei Wu, Ao Li, Florin-Alexandru Vasluianu, Yulun Zhang, Shuhang Gu, Le Zhang, Ce Zhu, Radu Timofte, Zhi Jin, Hongjun Wu, Chenxi Wang, Haitao Ling, Yuanhao Cai, Hao Bian, Yuxin Zheng, Jing Lin, Alan Yuille, Ben Shao, Jin Guo, Tianli Liu, Mohao Wu, Yixu Feng, Shuo Hou, Haotian Lin, Yu Zhu, Peng Wu, Wei Dong, Jinqiu Sun, Yanning Zhang, Qingsen Yan, Wenbin Zou, Weipeng Yang, Yunxiang Li, Qiaomu Wei, Tian Ye, Sixiang Chen, Zhao Zhang, Suiyi Zhao, Bo wang, Yan Luo, Zhichao Zuo, Mingshen Wang, Junhu Wang, Yanyan Wei, Xiaopeng Sun, Yu Gao, Jiancheng Huang, Hongming Chen, Xiang Chen, Hui Tang, Yuanbin Chen, Yuanbo Zhou, Xinwei Dai, Xintao Qiu, Wei Deng, Qinquan Gao, Tong Tong, Mingjia Li, Jin Hu, Xinyu He, Xiaojie Guo, sabarinathan, K Uma, A Sasithradevi, B Sathya Bama, S. Mohamed Mansoor Roomi, V. Srivatsav, Jinjuan Wang, Long Sun, Qiuying Chen, Jiahong Shao, Yizhi Zhang, Marcos V. Conde, Daniel Feijoo, Juan C. Benito, Alvaro García, Jaeho Lee, Seongwan Kim, Sharif S M A, Nodirkhuja Khujaev, Roman Tsoy, Ali Murtaza, Uswah Khairuddin, Ahmad 'Athif Mohd Faudzi, Sampada Malagi, Amogh Joshi, Nikhil Akalwadi, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudenagudi, Wenyi Lian, Wenjing Lian, Jagadeesh Kalyanshetti, Vijayalaxmi Ashok Aralikatti, Palani Yashaswini, Nitish Upasi, Dikshit Hegde, Ujwala Patil, Sujata C, Xingzhuo Yan, Wei Hao, Minghan Fu, Pooja Choksy, Anjali Sarvaiya, Kishor Upla, Kiran Raja, Hailong Yan, Yunkai Zhang, Baiang Li, Jingyi Zhang, Huan Zheng
This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results.
2 code implementations • 17 Apr 2024 • Zuowen Wang, Chang Gao, Zongwei Wu, Marcos V. Conde, Radu Timofte, Shih-Chii Liu, Qinyu Chen, Zheng-Jun Zha, Wei Zhai, Han Han, Bohao Liao, Yuliang Wu, Zengyu Wan, Zhong Wang, Yang Cao, Ganchao Tan, Jinze Chen, Yan Ru Pei, Sasskia Brüers, Sébastien Crouzet, Douglas McLelland, Oliver Coenen, Baoheng Zhang, Yizhao Gao, Jingyuan Li, Hayden Kwok-Hay So, Philippe Bich, Chiara Boretti, Luciano Prono, Mircea Lică, David Dinucu-Jianu, Cătălin Grîu, Xiaopeng Lin, Hongwei Ren, Bojun Cheng, Xinan Zhang, Valentin Vial, Anthony Yezzi, James Tsai
This survey reviews the AIS 2024 Event-Based Eye Tracking (EET) Challenge.
1 code implementation • 17 Apr 2024 • Nicolas Chahine, Marcos V. Conde, Daniela Carfora, Gabriel Pacianotto, Benoit Pochon, Sira Ferradans, Radu Timofte
This paper reviews the NTIRE 2024 Portrait Quality Assessment Challenge, highlighting the proposed solutions and results.
1 code implementation • 17 Apr 2024 • Omar Elezabi, Marcos V. Conde, Radu Timofte
First, we propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images.
1 code implementation • 29 Jan 2024 • Marcos V. Conde, Gregor Geigle, Radu Timofte
All-In-One image restoration models can effectively restore images from various types and levels of degradation using degradation-specific information as prompts to guide the restoration model.
1 code implementation • 24 Dec 2023 • Marcos V. Conde, Florin Vasluianu, Radu Timofte
Our BSRAW models trained with our pipeline can upscale real-scene RAW images and improve their quality.
2 code implementations • 17 Oct 2023 • Arno Candel, Jon McKinney, Philipp Singer, Pascal Pfeiffer, Maximilian Jeblick, Chun Ming Lee, Marcos V. Conde
The goal of this project is to boost open alternatives to closed-source approaches.
1 code implementation • 6 Sep 2023 • Carlos Gómez-Huélamo, Marcos V. Conde, Rafael Barea, Manuel Ocaña, Luis M. Bergasa
However, despite many approaches use simple ConvNets and LSTMs to obtain the social latent features, State-Of-The-Art (SOTA) models might be too complex for real-time applications when using both sources of information (map and past trajectories) as well as little interpretable, specially considering the physical information.
1 code implementation • 10 Jul 2023 • Gabor Fodor, Marcos V. Conde
Our method successfully achieves high-precision deforestation estimation and burned area detection on unseen images from the region.
1 code implementation • 20 Jun 2023 • Marcos V. Conde, Javier Vazquez-Corral, Michael S. Brown, Radu Timofte
Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly.
2 code implementations • 13 Jun 2023 • Arno Candel, Jon McKinney, Philipp Singer, Pascal Pfeiffer, Maximilian Jeblick, Prithvi Prabhu, Jeff Gambera, Mark Landry, Shivam Bansal, Ryan Chesler, Chun Ming Lee, Marcos V. Conde, Pasha Stetsenko, Olivier Grellier, SriSatish Ambati
Applications built on top of Large Language Models (LLMs) such as GPT-4 represent a revolution in AI due to their human-level capabilities in natural language processing.
1 code implementation • CVPRW 2023 • Marcos V. Conde, Manuel Kolmet, Tim Seizinger, Tom E. Bishop, Radu Timofte, Xiangyu Kong, Dafeng Zhang, Jinlong Wu, Fan Wang, Juewen Peng, Zhiyu Pan, Chengxin Liu, Xianrui Luo, Huiqiang Sun, Liao Shen, Zhiguo Cao, Ke Xian, Chaowei Liu, Zigeng Chen, Xingyi Yang, Songhua Liu, Yongcheng Jing, Michael Bi Mi, Xinchao Wang, Zhihao Yang, Wenyi Lian, Siyuan Lai, Haichuan Zhang, Trung Hoang, Amirsaeed Yazdani, Vishal Monga, Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön, Yuxuan Zhao, Baoliang Chen, Yiqing Xu, JiXiang Niu
We present the new Bokeh Effect Transformation Dataset (BETD), and review the proposed solutions for this novel task at the NTIRE 2023 Bokeh Effect Transformation Challenge.
1 code implementation • CVPR 2023 • Tim Seizinger, Marcos V. Conde, Manuel Kolmet, Tom E. Bishop, Radu Timofte
Our method can render Bokeh from an all-in-focus image, or transform the Bokeh of one lens to the effect of another lens without harming the sharp foreground regions in the image.
1 code implementation • CVPRW 2023 • Marcos V. Conde, Eduard Zamfir, Radu Timofte, Daniel Motilla, and others
This paper introduces a novel benchmark for efficient upscaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (x2 and x3 factors) in real-time on commercial GPUs.
2 code implementations • CVPRW 2023 • Eduard Zamfir, Marcos V. Conde, Radu Timofte
Over the past few years, high-definition videos and images in 720p (HD), 1080p (FHD), and 4K (UHD) resolution have become standard.
1 code implementation • 25 Nov 2022 • Marcos V. Conde, Florin Vasluianu, Sabari Nathan, Radu Timofte
We propose a lightweight model for blind UDC Image Restoration and HDR, and we also provide a benchmark comparing the performance and runtime of different methods on smartphones.
1 code implementation • 21 Nov 2022 • Navdeep Gill, Abhishek Mathur, Marcos V. Conde
Organizations of all sizes, across all industries and domains are leveraging artificial intelligence (AI) technologies to solve some of their biggest challenges around operations, customer experience, and much more.
1 code implementation • 7 Nov 2022 • Andrey Ignatov, Radu Timofte, Shuai Liu, Chaoyu Feng, Furui Bai, Xiaotao Wang, Lei Lei, Ziyao Yi, Yan Xiang, Zibin Liu, Shaoqing Li, Keming Shi, Dehui Kong, Ke Xu, Minsu Kwon, Yaqi Wu, Jiesi Zheng, Zhihao Fan, Xun Wu, Feng Zhang, Albert No, Minhyeok Cho, Zewen Chen, Xiaze Zhang, Ran Li, Juan Wang, Zhiming Wang, Marcos V. Conde, Ui-Jin Choi, Georgy Perevozchikov, Egor Ershov, Zheng Hui, Mengchuan Dong, Xin Lou, Wei Zhou, Cong Pang, Haina Qin, Mingxuan Cai
The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing.
no code implementations • 7 Nov 2022 • Andrey Ignatov, Grigory Malivenko, Radu Timofte, Lukasz Treszczotko, Xin Chang, Piotr Ksiazek, Michal Lopuszynski, Maciej Pioro, Rafal Rudnicki, Maciej Smyl, Yujie Ma, Zhenyu Li, Zehui Chen, Jialei Xu, Xianming Liu, Junjun Jiang, XueChao Shi, Difan Xu, Yanan Li, Xiaotao Wang, Lei Lei, Ziyu Zhang, Yicheng Wang, Zilong Huang, Guozhong Luo, Gang Yu, Bin Fu, Jiaqi Li, Yiran Wang, Zihao Huang, Zhiguo Cao, Marcos V. Conde, Denis Sapozhnikov, Byeong Hyun Lee, Dongwon Park, Seongmin Hong, Joonhee Lee, Seunggyu Lee, Se Young Chun
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks.
1 code implementation • 24 Oct 2022 • Marcos V. Conde, Florin Vasluianu, Javier Vazquez-Corral, Radu Timofte
Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks.
1 code implementation • 20 Oct 2022 • Marcos V. Conde, Radu Timofte, Yibin Huang, Jingyang Peng, Chang Chen, Cheng Li, Eduardo Pérez-Pellitero, Fenglong Song, Furui Bai, Shuai Liu, Chaoyu Feng, Xiaotao Wang, Lei Lei, Yu Zhu, Chenghua Li, Yingying Jiang, Yong A, Peisong Wang, Cong Leng, Jian Cheng, Xiaoyu Liu, Zhicun Yin, Zhilu Zhang, Junyi Li, Ming Liu, WangMeng Zuo, Jun Jiang, Jinha Kim, Yue Zhang, Beiji Zou, Zhikai Zong, Xiaoxiao Liu, Juan Marín Vega, Michael Sloth, Peter Schneider-Kamp, Richard Röttger, Furkan Kınlı, Barış Özcan, Furkan Kıraç, Li Leyi, SM Nadim Uddin, Dipon Kumar Ghosh, Yong Ju Jung
Cameras capture sensor RAW images and transform them into pleasant RGB images, suitable for the human eyes, using their integrated Image Signal Processor (ISP).
1 code implementation • 20 Oct 2022 • Marcos V. Conde, Ivan Aerlic, Simon Jégou
The Google Universal Image Embedding (GUIE) Challenge is one of the first competitions in multi-domain image representations in the wild, covering a wide distribution of objects: landmarks, artwork, food, etc.
1 code implementation • 26 Sep 2022 • Carlos Gómez-Huélamo, Marcos V. Conde, Miguel Ortiz, Santiago Montiel, Rafael Barea, Luis M. Bergasa
The design of a safe and reliable Autonomous Driving stack (ADS) is one of the most challenging tasks of our era.
3 code implementations • 22 Sep 2022 • Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte
Using this method we can tackle the major issues in training transformer vision models, such as training instability, resolution gaps between pre-training and fine-tuning, and hunger on data.
1 code implementation • 22 Jun 2022 • Marcos V. Conde, Ui-Jin Choi
It is easier to hear birds than see them.
1 code implementation • 25 May 2022 • Carlos Gómez-Huélamo, Marcos V. Conde, Miguel Ortiz
Motion prediction (MP) of multiple agents is a crucial task in arbitrarily complex environments, from social robots to self-driving cars.
2 code implementations • Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2021 • Marcos V. Conde, Kerem Turgutlu
Existing computer vision research in artwork struggles with artwork's fine-grained attributes recognition and lack of curated annotated datasets due to their costly creation.
1 code implementation • 27 Apr 2022 • Marcos V. Conde, Maxime Burchi, Radu Timofte
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
1 code implementation • 10 Jan 2022 • Marcos V. Conde, Steven McDonagh, Matteo Maggioni, Aleš Leonardis, Eduardo Pérez-Pellitero
Digital cameras transform sensor RAW readings into RGB images by means of their Image Signal Processor (ISP).
no code implementations • 15 Nov 2021 • Marcos V. Conde
Autonomous robots are currently one of the most popular Artificial Intelligence problems, having experienced significant advances in the last decade, from Self-driving cars and humanoids to delivery robots and drones.
1 code implementation • CLEF 2021 • Marcos V. Conde, Kumar Shubham, Prateek Agnihotri, Nitin D. Movva, Szilard Bessenyei
It is easier to hear birds than see them, however, they still play an essential role in nature and they are excellent indicators of deteriorating environmental quality and pollution.
1 code implementation • 19 Jun 2021 • Marcos V. Conde, Kerem Turgutlu
In this work, we propose a multi-stage ViT framework for fine-grained image classification tasks, which localizes the informative image regions without requiring architectural changes using the inherent multi-head self-attention mechanism.
1 code implementation • 15 Nov 2019 • Lijun Zhang, Srinath Nizampatnam, Ahana Gangopadhyay, Marcos V. Conde
The model performance is further improved by constructing multiple sets of attention networks.