1 code implementation • Sensors 2023 • Jakub Kanis, Ivan Gruber, Zdeněk Krňoul, Matyáš Boháček, Jakub Straka, Marek Hrúz
This work presents a novel transformer-based method for hand pose estimation—DePOTR.
Ranked #4 on Hand Pose Estimation on ICVL Hands
1 code implementation • 10 Jan 2023 • Matyáš Boháček, Marek Hrúz
This dataset represents the actual distribution and characteristics of available online sign language data.
no code implementations • 30 Sep 2022 • Matyáš Boháček, Zhuo Cao, Marek Hrúz
Sign language recognition could significantly improve the user experience for d/Deaf people with the general consumer technology, such as IoT devices or videoconferencing.
no code implementations • Sensors 2022 • Marek Hrúz, Ivan Gruber, Jakub Kanis, Matyáš Boháček, Miroslav Hlaváč, Zdeněk Krňoul
In this paper, we dive into sign language recognition, focusing on the recognition of isolated signs.
Ranked #4 on Sign Language Recognition on AUTSL
1 code implementation • WACV 2022 • Matyáš Boháček, Marek Hrúz
We introduce a robust pose normalization scheme which takes the signing space in considerationand processes the hand poses in a separate local coordinate system, independent on the body pose.
Ranked #1 on Sign Language Recognition on LSA64
no code implementations • IEEE Access 2021 • Marek Hrúz, Jakub Kanis, Zdenĕk Krňoul
In this article we tackle the problem of hand pose estimation when the hand is interacting with various objects from egocentric viewpoint.
Ranked #2 on Hand Pose Estimation on HANDS 2017
no code implementations • ECCV 2020 • Anil Armagan, Guillermo Garcia-Hernando, Seungryul Baek, Shreyas Hampali, Mahdi Rad, Zhaohui Zhang, Shipeng Xie, Mingxiu Chen, Boshen Zhang, Fu Xiong, Yang Xiao, Zhiguo Cao, Junsong Yuan, Pengfei Ren, Weiting Huang, Haifeng Sun, Marek Hrúz, Jakub Kanis, Zdeněk Krňoul, Qingfu Wan, Shile Li, Linlin Yang, Dongheui Lee, Angela Yao, Weiguo Zhou, Sijia Mei, Yun-hui Liu, Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Philippe Weinzaepfel, Romain Brégier, Grégory Rogez, Vincent Lepetit, Tae-Kyun Kim
To address these issues, we designed a public challenge (HANDS'19) to evaluate the abilities of current 3D hand pose estimators (HPEs) to interpolate and extrapolate the poses of a training set.