Search Results for author: Margaret Mitchell

Found 51 papers, 11 papers with code

Constructing the CORD-19 Vaccine Dataset

no code implementations26 Jul 2024 Manisha Singh, Divy Sharma, Alonso Ma, Bridget Tyree, Margaret Mitchell

We introduce new dataset 'CORD-19-Vaccination' to cater to scientists specifically looking into COVID-19 vaccine-related research.

Question Answering Sentence +1

CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models

no code implementations22 May 2024 Giada Pistilli, Alina Leidinger, Yacine Jernite, Atoosa Kasirzadeh, Alexandra Sasha Luccioni, Margaret Mitchell

This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics.

Measuring Data

no code implementations9 Dec 2022 Margaret Mitchell, Alexandra Sasha Luccioni, Nathan Lambert, Marissa Gerchick, Angelina McMillan-Major, Ezinwanne Ozoani, Nazneen Rajani, Tristan Thrush, Yacine Jernite, Douwe Kiela

We identify the task of measuring data to quantitatively characterize the composition of machine learning data and datasets.

The Stack: 3 TB of permissively licensed source code

no code implementations20 Nov 2022 Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra, Harm de Vries

Large Language Models (LLMs) play an ever-increasing role in the field of Artificial Intelligence (AI)--not only for natural language processing but also for code understanding and generation.

BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

7 code implementations9 Nov 2022 BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Daniel McDuff, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions.

Decoder Language Modelling +1

A Human Rights-Based Approach to Responsible AI

no code implementations6 Oct 2022 Vinodkumar Prabhakaran, Margaret Mitchell, Timnit Gebru, Iason Gabriel

Research on fairness, accountability, transparency and ethics of AI-based interventions in society has gained much-needed momentum in recent years.

Ethics Fairness

Measuring Model Biases in the Absence of Ground Truth

no code implementations5 Mar 2021 Osman Aka, Ken Burke, Alex Bäuerle, Christina Greer, Margaret Mitchell

By treating a classification model's predictions for a given image as a set of labels analogous to a bag of words, we rank the biases that a model has learned with respect to different identity labels.

Fairness Image Classification

White Paper - Creating a Repository of Objectionable Online Content: Addressing Undesirable Biases and Ethical Considerations

no code implementations23 Feb 2021 Thamar Solorio, Mahsa Shafaei, Christos Smailis, Isabelle Augenstein, Margaret Mitchell, Ingrid Stapf, Ioannis Kakadiaris

This white paper summarizes the authors' structured brainstorming regarding ethical considerations for creating an extensive repository of online content labeled with tags that describe potentially questionable content for young viewers.

Diversity and Inclusion Metrics in Subset Selection

no code implementations9 Feb 2020 Margaret Mitchell, Dylan Baker, Nyalleng Moorosi, Emily Denton, Ben Hutchinson, Alex Hanna, Timnit Gebru, Jamie Morgenstern

The ethical concept of fairness has recently been applied in machine learning (ML) settings to describe a wide range of constraints and objectives.

Diversity Fairness

Saving Face: Investigating the Ethical Concerns of Facial Recognition Auditing

no code implementations3 Jan 2020 Inioluwa Deborah Raji, Timnit Gebru, Margaret Mitchell, Joy Buolamwini, Joonseok Lee, Emily Denton

Although essential to revealing biased performance, well intentioned attempts at algorithmic auditing can have effects that may harm the very populations these measures are meant to protect.

Computers and Society

Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal Algorithmic Auditing

no code implementations3 Jan 2020 Inioluwa Deborah Raji, Andrew Smart, Rebecca N. White, Margaret Mitchell, Timnit Gebru, Ben Hutchinson, Jamila Smith-Loud, Daniel Theron, Parker Barnes

Rising concern for the societal implications of artificial intelligence systems has inspired a wave of academic and journalistic literature in which deployed systems are audited for harm by investigators from outside the organizations deploying the algorithms.

Computers and Society

Perturbation Sensitivity Analysis to Detect Unintended Model Biases

no code implementations IJCNLP 2019 Vinodkumar Prabhakaran, Ben Hutchinson, Margaret Mitchell

Data-driven statistical Natural Language Processing (NLP) techniques leverage large amounts of language data to build models that can understand language.

Sentiment Analysis

Image Counterfactual Sensitivity Analysis for Detecting Unintended Bias

no code implementations14 Jun 2019 Emily Denton, Ben Hutchinson, Margaret Mitchell, Timnit Gebru, Andrew Zaldivar

Facial analysis models are increasingly used in applications that have serious impacts on people's lives, ranging from authentication to surveillance tracking.

Attribute counterfactual +1

50 Years of Test (Un)fairness: Lessons for Machine Learning

no code implementations25 Nov 2018 Ben Hutchinson, Margaret Mitchell

We trace how the notion of fairness has been defined within the testing communities of education and hiring over the past half century, exploring the cultural and social context in which different fairness definitions have emerged.

BIG-bench Machine Learning Fairness

Model Cards for Model Reporting

12 code implementations5 Oct 2018 Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, Timnit Gebru

Model cards also disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information.

BIG-bench Machine Learning

Mitigating Unwanted Biases with Adversarial Learning

3 code implementations22 Jan 2018 Brian Hu Zhang, Blake Lemoine, Margaret Mitchell

Machine learning is a tool for building models that accurately represent input training data.

Fairness General Classification

Multi-Task Learning for Mental Health using Social Media Text

no code implementations10 Dec 2017 Adrian Benton, Margaret Mitchell, Dirk Hovy

We introduce initial groundwork for estimating suicide risk and mental health in a deep learning framework.

Gender Prediction Multi-Task Learning

InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity

1 code implementation1 Dec 2017 Hee Jung Ryu, Hartwig Adam, Margaret Mitchell

We demonstrate an approach to face attribute detection that retains or improves attribute detection accuracy across gender and race subgroups by learning demographic information prior to learning the attribute detection task.

Attribute Diversity

Memory-augmented Attention Modelling for Videos

1 code implementation7 Nov 2016 Rasool Fakoor, Abdel-rahman Mohamed, Margaret Mitchell, Sing Bing Kang, Pushmeet Kohli

We present a method to improve video description generation by modeling higher-order interactions between video frames and described concepts.

Video Description

Generating Natural Questions About an Image

2 code implementations ACL 2016 Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Margaret Mitchell, Xiaodong He, Lucy Vanderwende

There has been an explosion of work in the vision & language community during the past few years from image captioning to video transcription, and answering questions about images.

Image Captioning Natural Questions +3

Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels

no code implementations CVPR 2016 Ishan Misra, C. Lawrence Zitnick, Margaret Mitchell, Ross Girshick

When human annotators are given a choice about what to label in an image, they apply their own subjective judgments on what to ignore and what to mention.

Image Captioning Image Classification

deltaBLEU: A Discriminative Metric for Generation Tasks with Intrinsically Diverse Targets

no code implementations IJCNLP 2015 Michel Galley, Chris Brockett, Alessandro Sordoni, Yangfeng Ji, Michael Auli, Chris Quirk, Margaret Mitchell, Jianfeng Gao, Bill Dolan

We introduce Discriminative BLEU (deltaBLEU), a novel metric for intrinsic evaluation of generated text in tasks that admit a diverse range of possible outputs.

Sentence

Cannot find the paper you are looking for? You can Submit a new open access paper.