no code implementations • 14 Nov 2024 • Soumick Chatterjee, Hendrik Mattern, Marc Dörner, Alessandro Sciarra, Florian Dubost, Hannes Schnurre, Rupali Khatun, Chun-Chih Yu, Tsung-Lin Hsieh, Yi-Shan Tsai, Yi-Zeng Fang, Yung-Ching Yang, Juinn-Dar Huang, Marshall Xu, Siyu Liu, Fernanda L. Ribeiro, Saskia Bollmann, Karthikesh Varma Chintalapati, Chethan Mysuru Radhakrishna, Sri Chandana Hudukula Ram Kumara, Raviteja Sutrave, Abdul Qayyum, Moona Mazher, Imran Razzak, Cristobal Rodero, Steven Niederren, Fengming Lin, Yan Xia, Jiacheng Wang, Riyu Qiu, Liansheng Wang, Arya Yazdan Panah, Rosana El Jurdi, Guanghui Fu, Janan Arslan, Ghislain Vaillant, Romain Valabregue, Didier Dormont, Bruno Stankoff, Olivier Colliot, Luisa Vargas, Isai Daniel Chacón, Ioannis Pitsiorlas, Pablo Arbeláez, Maria A. Zuluaga, Stefanie Schreiber, Oliver Speck, Andreas Nürnberger
The human brain receives nutrients and oxygen through an intricate network of blood vessels.
no code implementations • 30 Jul 2024 • Hava Chaptoukaev, Vincenzo Marcianó, Francesco Galati, Maria A. Zuluaga
We demonstrate that our strategy is robust to high rates of missing data and that its flexibility allows it to handle varying-sized datasets beyond the scenario of missing modalities.
2 code implementations • 29 Dec 2023 • Kaiyuan Yang, Fabio Musio, Yihui Ma, Norman Juchler, Johannes C. Paetzold, Rami Al-Maskari, Luciano Höher, Hongwei Bran Li, Ibrahim Ethem Hamamci, Anjany Sekuboyina, Suprosanna Shit, Houjing Huang, Chinmay Prabhakar, Ezequiel de la Rosa, Diana Waldmannstetter, Florian Kofler, Fernando Navarro, Martin Menten, Ivan Ezhov, Daniel Rueckert, Iris Vos, Ynte Ruigrok, Birgitta Velthuis, Hugo Kuijf, Julien Hämmerli, Catherine Wurster, Philippe Bijlenga, Laura Westphal, Jeroen Bisschop, Elisa Colombo, Hakim Baazaoui, Andrew Makmur, James Hallinan, Bene Wiestler, Jan S. Kirschke, Roland Wiest, Emmanuel Montagnon, Laurent Letourneau-Guillon, Adrian Galdran, Francesco Galati, Daniele Falcetta, Maria A. Zuluaga, Chaolong Lin, Haoran Zhao, Zehan Zhang, Sinyoung Ra, Jongyun Hwang, HyunJin Park, Junqiang Chen, Marek Wodzinski, Henning Müller, Pengcheng Shi, Wei Liu, Ting Ma, Cansu Yalçin, Rachika E. Hamadache, Joaquim Salvi, Xavier Llado, Uma Maria Lal-Trehan Estrada, Valeriia Abramova, Luca Giancardo, Arnau Oliver, Jialu Liu, Haibin Huang, Yue Cui, Zehang Lin, Yusheng Liu, Shunzhi Zhu, Tatsat R. Patel, Vincent M. Tutino, Maysam Orouskhani, Huayu Wang, Mahmud Mossa-Basha, Chengcheng Zhu, Maximilian R. Rokuss, Yannick Kirchhoff, Nico Disch, Julius Holzschuh, Fabian Isensee, Klaus Maier-Hein, Yuki Sato, Sven Hirsch, Susanne Wegener, Bjoern Menze
The TopCoW dataset was the first public dataset with voxel-level annotations for thirteen possible CoW vessel components, enabled by virtual-reality (VR) technology.
no code implementations • 12 Sep 2023 • Francesco Galati, Daniele Falcetta, Rosa Cortese, Barbara Casolla, Ferran Prados, Ninon Burgos, Maria A. Zuluaga
We present a semi-supervised domain adaptation framework for brain vessel segmentation from different image modalities.
1 code implementation • 23 Jun 2023 • Riccardo Schiavone, Francesco Galati, Maria A. Zuluaga
Binary neural networks (BNNs) are an attractive solution for developing and deploying deep neural network (DNN)-based applications in resource constrained devices.
1 code implementation • 16 Apr 2023 • Natalia Valderrama, Ioannis Pitsiorlas, Luisa Vargas, Pablo Arbeláez, Maria A. Zuluaga
These results show the adequacy of JoB-VS for the challenging task of vessel segmentation in complete TOF-MRA images.
1 code implementation • 10 Nov 2022 • Vien Ngoc Dang, Anna Cascarano, Rosa H. Mulder, Charlotte Cecil, Maria A. Zuluaga, Jerónimo Hernández-González, Karim Lekadir
Here, we present a systematic study of bias in ML models designed to predict depression in four different case studies covering different countries and populations.
no code implementations • 11 Jul 2022 • Riccardo Schiavone, Maria A. Zuluaga
Our experiments confirm that SBNNs can achieve high compression rates, without compromising generalization, while further reducing the operations of BNNs, making SBNNs a viable option for deploying DNNs in cheap, low-cost, limited-resources IoT devices and sensors.
Ranked #1 on Sparse Learning and binarization on CIFAR-100
no code implementations • 4 Apr 2022 • Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, Maria A. Zuluaga
In this work, we study the anomaly detection performance of sixteen conventional, machine learning-based and, deep neural network approaches on five real-world open datasets.
1 code implementation • 7 Feb 2022 • Piera Riccio, Kristin Bergaust, Boel Christensen-Scheel, Juan-Carlos De Martin, Maria A. Zuluaga, Stefano Nichele
While Artificial Intelligence (AI) technologies are being progressively developed, artists and researchers are investigating their role in artistic practices.
no code implementations • 21 Sep 2021 • Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet, Maria A. Zuluaga
In Multi-Task Learning (MTL), it is a common practice to train multi-task networks by optimizing an objective function, which is a weighted average of the task-specific objective functions.
2 code implementations • 12 Apr 2021 • Francesco Galati, Maria A. Zuluaga
Deep learning methods have reached state-of-the-art performance in cardiac image segmentation.
no code implementations • 9 Apr 2021 • Laura M. Ferrari, Guy Abi Hanna, Paolo Volpe, Esma Ismailova, François Bremond, Maria A. Zuluaga
A limiting factor towards the wide routine use of wearables devices for continuous healthcare monitoring is their cumbersome and obtrusive nature.
no code implementations • 5 Apr 2021 • Maria A. Zuluaga, Alex F. Mendelson, M. Jorge Cardoso, Andrew M. Taylor, Sébastien Ourselin
One of the main sources of error in multi-atlas segmentation propagation approaches comes from the use of atlas databases that are morphologically dissimilar to the target image.
1 code implementation • 22 Jan 2021 • Vien Ngoc Dang, Francesco Galati, Rosa Cortese, Giuseppe Di Giacomo, Viola Marconetto, Prateek Mathur, Karim Lekadir, Marco Lorenzi, Ferran Prados, Maria A. Zuluaga
First, deep learning techniques tend to show poor performances at the segmentation of relatively small objects compared to the size of the full image.
2 code implementations • KDD 2020 • Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, Maria A. Zuluaga
Through a feasibility study using Orange's proprietary data we have been able to validate Orange's requirements on scalability, stability, robustness, training speed and high performance.
1 code implementation • 17 Jun 2020 • Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet, Maria A. Zuluaga
Multi-task learning has gained popularity due to the advantages it provides with respect to resource usage and performance.
no code implementations • 5 Apr 2020 • Maria A. Zuluaga, M. Jorge Cardoso, Sébastien Ourselin
Accurate segmentation of the right ventricle (RV) is a crucial step in the assessment of the ventricular structure and function.
2 code implementations • 16 Mar 2020 • Rosa Candela, Pietro Michiardi, Maurizio Filippone, Maria A. Zuluaga
Accurate travel products price forecasting is a highly desired feature that allows customers to take informed decisions about purchases, and companies to build and offer attractive tour packages.
Applications
no code implementations • 20 Feb 2020 • Sujoy Chatterjee, Nicolas Pasquier, Simon Nanty, Maria A. Zuluaga
To provide personalized recommendations for travel searches, an appropriate segmentation of customers is required.
1 code implementation • 8 Jan 2019 • Da Ma, Manuel J. Cardoso, Maria A. Zuluaga, Marc Modat, Nick. Powell, Frances Wiseman, Victor Tybulewicz, Elizabeth Fisher, Mark. F. Lythgoe, Sebastien Ourselin
In this work, we introduce a framework to extract the Purkinje layer within the grey matter, enabling the estimation of the thickness of the cerebellar grey matter, the granular layer and molecular layer from gadolinium-enhanced ex vivo mouse brain MRI.
no code implementations • 14 Sep 2018 • Stefano Moriconi, Maria A. Zuluaga, H. Rolf Jager, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Vascular graphs can embed a number of high-level features, from morphological parameters, to functional biomarkers, and represent an invaluable tool for longitudinal and cross-sectional clinical inference.
no code implementations • 8 Jun 2018 • Stefano Moriconi, Maria A. Zuluaga, H. Rolf Jäger, Parashkev Nachev, Sébastien Ourselin, M. Jorge Cardoso
The analysis of vessel morphology and connectivity has an impact on a number of cardiovascular and neurovascular applications by providing patient-specific high-level quantitative features such as spatial location, direction and scale.
no code implementations • 11 Oct 2017 • Guotai Wang, Wenqi Li, Maria A. Zuluaga, Rosalind Pratt, Premal A. Patel, Michael Aertsen, Tom Doel, Anna L. David, Jan Deprest, Sebastien Ourselin, Tom Vercauteren
Experimental results show that 1) our model is more robust to segment previously unseen objects than state-of-the-art CNNs; 2) image-specific fine-tuning with the proposed weighted loss function significantly improves segmentation accuracy; and 3) our method leads to accurate results with fewer user interactions and less user time than traditional interactive segmentation methods.
1 code implementation • 3 Jul 2017 • Guotai Wang, Maria A. Zuluaga, Wenqi Li, Rosalind Pratt, Premal A. Patel, Michael Aertsen, Tom Doel, Anna L. David, Jan Deprest, Sebastien Ourselin, Tom Vercauteren
We propose a deep learning-based interactive segmentation method to improve the results obtained by an automatic CNN and to reduce user interactions during refinement for higher accuracy.
no code implementations • 18 Feb 2016 • Alex F. Mendelson, Maria A. Zuluaga, Brian F. Hutton, Sébastien Ourselin
The purpose of this report is to present the distribution of the number of unique original items in a bootstrap sample clearly and concisely, with a view to enabling other machine learning researchers to understand and control this quantity in existing and future resampling techniques.