Search Results for author: Maria Chang

Found 9 papers, 1 papers with code

Infusing Knowledge into the Textual Entailment Task Using Graph Convolutional Networks

no code implementations5 Nov 2019 Pavan Kapanipathi, Veronika Thost, Siva Sankalp Patel, Spencer Whitehead, Ibrahim Abdelaziz, Avinash Balakrishnan, Maria Chang, Kshitij Fadnis, Chulaka Gunasekara, Bassem Makni, Nicholas Mattei, Kartik Talamadupula, Achille Fokoue

A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task.

Knowledge Graphs Natural Language Inference

Graph Enhanced Cross-Domain Text-to-SQL Generation

no code implementations WS 2019 Siyu Huo, Tengfei Ma, Jie Chen, Maria Chang, Lingfei Wu, Michael Witbrock

Semantic parsing is a fundamental problem in natural language understanding, as it involves the mapping of natural language to structured forms such as executable queries or logic-like knowledge representations.

Natural Language Understanding Semantic Parsing +3

Answering Science Exam Questions Using Query Rewriting with Background Knowledge

no code implementations15 Sep 2018 Ryan Musa, Xiaoyan Wang, Achille Fokoue, Nicholas Mattei, Maria Chang, Pavan Kapanipathi, Bassem Makni, Kartik Talamadupula, Michael Witbrock

Open-domain question answering (QA) is an important problem in AI and NLP that is emerging as a bellwether for progress on the generalizability of AI methods and techniques.

Information Retrieval Natural Language Inference +1

Cannot find the paper you are looking for? You can Submit a new open access paper.