1 code implementation • 12 Jun 2024 • Benjamin Hsu, Xiaoyu Liu, Huayang Li, Yoshinari Fujinuma, Maria Nadejde, Xing Niu, Yair Kittenplon, Ron Litman, Raghavendra Pappagari
Document translation poses a challenge for Neural Machine Translation (NMT) systems.
no code implementations • 26 May 2023 • Gabriele Sarti, Phu Mon Htut, Xing Niu, Benjamin Hsu, Anna Currey, Georgiana Dinu, Maria Nadejde
Attribute-controlled translation (ACT) is a subtask of machine translation that involves controlling stylistic or linguistic attributes (like formality and gender) of translation outputs.
no code implementations • 19 Oct 2022 • Suvodeep Majumder, Stanislas Lauly, Maria Nadejde, Marcello Federico, Georgiana Dinu
This paper addresses the task of contextual translation using multi-segment models.
2 code implementations • 12 Jul 2022 • Felix Hieber, Michael Denkowski, Tobias Domhan, Barbara Darques Barros, Celina Dong Ye, Xing Niu, Cuong Hoang, Ke Tran, Benjamin Hsu, Maria Nadejde, Surafel Lakew, Prashant Mathur, Anna Currey, Marcello Federico
When running comparable models, Sockeye 3 is up to 126% faster than other PyTorch implementations on GPUs and up to 292% faster on CPUs.
no code implementations • WS 2019 • Maria Nadejde, Joel Tetreault
Grammar error correction (GEC) systems have become ubiquitous in a variety of software applications, and have started to approach human-level performance for some datasets.
no code implementations • WS 2017 • Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn, Alexandra Birch
Our results on WMT data show that explicitly modeling target-syntax improves machine translation quality for German->English, a high-resource pair, and for Romanian->English, a low-resource pair and also several syntactic phenomena including prepositional phrase attachment.