1 code implementation • WMT (EMNLP) 2020 • Rachel Bawden, Giorgio Maria Di Nunzio, Cristian Grozea, Inigo Jauregi Unanue, Antonio Jimeno Yepes, Nancy Mah, David Martinez, Aurélie Névéol, Mariana Neves, Maite Oronoz, Olatz Perez-de-Viñaspre, Massimo Piccardi, Roland Roller, Amy Siu, Philippe Thomas, Federica Vezzani, Maika Vicente Navarro, Dina Wiemann, Lana Yeganova
Machine translation of scientific abstracts and terminologies has the potential to support health professionals and biomedical researchers in some of their activities.
no code implementations • WMT (EMNLP) 2021 • Lana Yeganova, Dina Wiemann, Mariana Neves, Federica Vezzani, Amy Siu, Inigo Jauregi Unanue, Maite Oronoz, Nancy Mah, Aurélie Névéol, David Martinez, Rachel Bawden, Giorgio Maria Di Nunzio, Roland Roller, Philippe Thomas, Cristian Grozea, Olatz Perez-de-Viñaspre, Maika Vicente Navarro, Antonio Jimeno Yepes
In the sixth edition of the WMT Biomedical Task, we addressed a total of eight language pairs, namely English/German, English/French, English/Spanish, English/Portuguese, English/Chinese, English/Russian, English/Italian, and English/Basque.
no code implementations • 9 Apr 2024 • Mariana Neves
We compared the use of title and abstract to restricting to only some argumentative elements.
1 code implementation • 13 Oct 2020 • Mariana Neves, Jurica Seva
We analyzed the tools over a set of 31 features and implemented simple scripts and a Web application that filters the tools based on chosen criteria.
no code implementations • LREC 2020 • Aur{\'e}lie N{\'e}v{\'e}ol, Antonio Jimeno Yepes, Mariana Neves
Conclusion: The information collected in this study will be used to inform test set design for the next WMT biomedical task.
1 code implementation • WS 2019 • Mariana Neves, Daniel Butzke, Barbara Grune
Rhetorical elements from scientific publications provide a more structured view of the document and allow algorithms to focus on particular parts of the text.
no code implementations • WS 2019 • Rachel Bawden, Kevin Bretonnel Cohen, Cristian Grozea, Antonio Jimeno Yepes, Madeleine Kittner, Martin Krallinger, Nancy Mah, Aurelie Neveol, Mariana Neves, Felipe Soares, Amy Siu, Karin Verspoor, Maika Vicente Navarro
In the fourth edition of the WMT Biomedical Translation task, we considered a total of six languages, namely Chinese (zh), English (en), French (fr), German (de), Portuguese (pt), and Spanish (es).
no code implementations • WS 2018 • Fabian Eckert, Mariana Neves
Question answering (QA) systems usually rely on advanced natural language processing components to precisely understand the questions and extract the answers.
no code implementations • WS 2018 • Mariana Neves, Antonio Jimeno Yepes, Aur{\'e}lie N{\'e}v{\'e}ol, Cristian Grozea, Amy Siu, Madeleine Kittner, Karin Verspoor
Machine translation enables the automatic translation of textual documents between languages and can facilitate access to information only available in a given language for non-speakers of this language, e. g. research results presented in scientific publications.
no code implementations • EMNLP 2018 • Ond{\v{r}}ej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aur{\'e}lie N{\'e}v{\'e}ol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, Karin Verspoor
no code implementations • SEMEVAL 2018 • Mariana Neves, Daniel Butzke, Gilbert Sch{\"o}nfelder, Barbara Grune
Automatic extraction of semantic relations from text can support finding relevant information from scientific publications.
1 code implementation • LREC 2018 • Diego Moussallem, Thiago castro Ferreira, Marcos Zampieri, Maria Claudia Cavalcanti, Geraldo Xexéo, Mariana Neves, Axel-Cyrille Ngonga Ngomo
The generation of natural language from Resource Description Framework (RDF) data has recently gained significant attention due to the continuous growth of Linked Data.
no code implementations • WS 2017 • Antonio Jimeno Yepes, Aur{\'e}lie N{\'e}v{\'e}ol, Mariana Neves, Karin Verspoor, Ond{\v{r}}ej Bojar, Arthur Boyer, Cristian Grozea, Barry Haddow, Madeleine Kittner, Yvonne Lichtblau, Pavel Pecina, Rol Roller, , Rudolf Rosa, Amy Siu, Philippe Thomas, Saskia Trescher
no code implementations • WS 2017 • Mariana Neves, Fabian Eckert, Hendrik Folkerts, Matthias Uflacker
In addition to the BioASQ evaluation, we compared our system to other on-line biomedical QA systems in terms of the response time and the quality of the answers.
no code implementations • WS 2017 • Mariana Neves
We developed a parallel corpus of clinical trials in Portuguese and English.
no code implementations • WS 2017 • Georg Wiese, Dirk Weissenborn, Mariana Neves
We focus on factoid and list question, using an extractive QA model, that is, we restrict our system to output substrings of the provided text snippets.
1 code implementation • CONLL 2017 • Georg Wiese, Dirk Weissenborn, Mariana Neves
However, these systems have not yet been applied to QA in more specific domains, such as biomedicine, because datasets are generally too small to train a DL system from scratch.
1 code implementation • WS 2016 • Mariana Neves, Milena Kraus
Question answering (QA) systems need to provide exact answers for the questions that are posed to the system.
no code implementations • WS 2016 • Frederik Schulze, Mariana Neves
The increasing amount of biomedical information that is available for researchers and clinicians makes it harder to quickly find the right information.
no code implementations • WS 2016 • Ond{\v{r}}ej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Liane Guillou, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Aur{\'e}lie N{\'e}v{\'e}ol, Mariana Neves, Pavel Pecina, Martin Popel, Philipp Koehn, Christof Monz, Matteo Negri, Matt Post, Lucia Specia, Karin Verspoor, J{\"o}rg Tiedemann, Marco Turchi
no code implementations • WS 2016 • Ond{\v{r}}ej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Aur{\'e}lie N{\'e}v{\'e}ol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, Marcos Zampieri
no code implementations • LREC 2016 • Mariana Neves, Antonio Jimeno Yepes, Aur{\'e}lie N{\'e}v{\'e}ol
We show that for all language pairs, a statistical machine translation system trained on the parallel corpora achieves performance that rivals or exceeds the state of the art in the biomedical domain.