no code implementations • 30 Aug 2024 • Alexander New, Marisel Villafañe-Delgado, Charles Shugert
Scientific machine learning (SciML) methods such as physics-informed neural networks (PINNs) are used to estimate parameters of interest from governing equations and small quantities of data.
no code implementations • 26 May 2023 • Erik C. Johnson, Brian S. Robinson, Gautam K. Vallabha, Justin Joyce, Jordan K. Matelsky, Raphael Norman-Tenazas, Isaac Western, Marisel Villafañe-Delgado, Martha Cervantes, Michael S. Robinette, Arun V. Reddy, Lindsey Kitchell, Patricia K. Rivlin, Elizabeth P. Reilly, Nathan Drenkow, Matthew J. Roos, I-Jeng Wang, Brock A. Wester, William R. Gray-Roncal, Joan A. Hoffmann
We envision a pipeline to utilize large neuroimaging datasets, including maps of the brain which capture neuron and synapse connectivity, to improve machine learning approaches.