no code implementations • 30 Mar 2022 • Philip Harris, Erik Katsavounidis, William Patrick McCormack, Dylan Rankin, Yongbin Feng, Abhijith Gandrakota, Christian Herwig, Burt Holzman, Kevin Pedro, Nhan Tran, Tingjun Yang, Jennifer Ngadiuba, Michael Coughlin, Scott Hauck, Shih-Chieh Hsu, Elham E Khoda, Deming Chen, Mark Neubauer, Javier Duarte, Georgia Karagiorgi, Mia Liu
Machine learning (ML) is becoming an increasingly important component of cutting-edge physics research, but its computational requirements present significant challenges.
no code implementations • 3 Dec 2021 • Abdelrahman Elabd, Vesal Razavimaleki, Shi-Yu Huang, Javier Duarte, Markus Atkinson, Gage DeZoort, Peter Elmer, Scott Hauck, Jin-Xuan Hu, Shih-Chieh Hsu, Bo-Cheng Lai, Mark Neubauer, Isobel Ojalvo, Savannah Thais, Matthew Trahms
The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC).
1 code implementation • 30 Mar 2021 • Gage DeZoort, Savannah Thais, Javier Duarte, Vesal Razavimaleki, Markus Atkinson, Isobel Ojalvo, Mark Neubauer, Peter Elmer
Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited to address a variety of reconstruction problems in high energy particle physics.
2 code implementations • 11 Mar 2021 • Xiangyang Ju, Daniel Murnane, Paolo Calafiura, Nicholas Choma, Sean Conlon, Steve Farrell, Yaoyuan Xu, Maria Spiropulu, Jean-Roch Vlimant, Adam Aurisano, Jeremy Hewes, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Markus Atkinson, Mark Neubauer, Gage DeZoort, Savannah Thais, Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu, Alex Ballow, and Alina Lazar
The Exa. TrkX project has applied geometric learning concepts such as metric learning and graph neural networks to HEP particle tracking.
no code implementations • 30 Nov 2020 • Aneesh Heintz, Vesal Razavimaleki, Javier Duarte, Gage DeZoort, Isobel Ojalvo, Savannah Thais, Markus Atkinson, Mark Neubauer, Lindsey Gray, Sergo Jindariani, Nhan Tran, Philip Harris, Dylan Rankin, Thea Aarrestad, Vladimir Loncar, Maurizio Pierini, Sioni Summers, Jennifer Ngadiuba, Mia Liu, Edward Kreinar, Zhenbin Wu
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
no code implementations • 26 Nov 2019 • E. A. Huerta, Gabrielle Allen, Igor Andreoni, Javier M. Antelis, Etienne Bachelet, Bruce Berriman, Federica Bianco, Rahul Biswas, Matias Carrasco, Kyle Chard, Minsik Cho, Philip S. Cowperthwaite, Zachariah B. Etienne, Maya Fishbach, Francisco Förster, Daniel George, Tom Gibbs, Matthew Graham, William Gropp, Robert Gruendl, Anushri Gupta, Roland Haas, Sarah Habib, Elise Jennings, Margaret W. G. Johnson, Erik Katsavounidis, Daniel S. Katz, Asad Khan, Volodymyr Kindratenko, William T. C. Kramer, Xin Liu, Ashish Mahabal, Zsuzsa Marka, Kenton McHenry, Jonah Miller, Claudia Moreno, Mark Neubauer, Steve Oberlin, Alexander R. Olivas, Donald Petravick, Adam Rebei, Shawn Rosofsky, Milton Ruiz, Aaron Saxton, Bernard F. Schutz, Alex Schwing, Ed Seidel, Stuart L. Shapiro, Hongyu Shen, Yue Shen, Leo Singer, Brigitta M. Sipőcz, Lunan Sun, John Towns, Antonios Tsokaros, Wei Wei, Jack Wells, Timothy J. Williams, JinJun Xiong, Zhizhen Zhao
Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos.
no code implementations • 8 Jul 2018 • Kim Albertsson, Piero Altoe, Dustin Anderson, John Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Bjorn Burkle, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Yi-fan Chen, Taylor Childers, Yann Coadou, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Andrea De Simone, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ulrich Heintz, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Sydney Otten, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Wei Sun, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Justin Vasel, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Kun Yang, Omar Zapata
In this document we discuss promising future research and development areas for machine learning in particle physics.