no code implementations • 21 May 2024 • Irina Jurenka, Markus Kunesch, Kevin R. McKee, Daniel Gillick, Shaojian Zhu, Sara Wiltberger, Shubham Milind Phal, Katherine Hermann, Daniel Kasenberg, Avishkar Bhoopchand, Ankit Anand, Miruna Pîslar, Stephanie Chan, Lisa Wang, Jennifer She, Parsa Mahmoudieh, Aliya Rysbek, Wei-Jen Ko, Andrea Huber, Brett Wiltshire, Gal Elidan, Roni Rabin, Jasmin Rubinovitz, Amit Pitaru, Mac McAllister, Julia Wilkowski, David Choi, Roee Engelberg, Lidan Hackmon, Adva Levin, Rachel Griffin, Michael Sears, Filip Bar, Mia Mesar, Mana Jabbour, Arslan Chaudhry, James Cohan, Sridhar Thiagarajan, Nir Levine, Ben Brown, Dilan Gorur, Svetlana Grant, Rachel Hashimshoni, Laura Weidinger, Jieru Hu, Dawn Chen, Kuba Dolecki, Canfer Akbulut, Maxwell Bileschi, Laura Culp, Wen-Xin Dong, Nahema Marchal, Kelsie Van Deman, Hema Bajaj Misra, Michael Duah, Moran Ambar, Avi Caciularu, Sandra Lefdal, Chris Summerfield, James An, Pierre-Alexandre Kamienny, Abhinit Mohdi, Theofilos Strinopoulous, Annie Hale, Wayne Anderson, Luis C. Cobo, Niv Efron, Muktha Ananda, Shakir Mohamed, Maureen Heymans, Zoubin Ghahramani, Yossi Matias, Ben Gomes, Lila Ibrahim
A major challenge facing the world is the provision of equitable and universal access to quality education.
no code implementations • 29 May 2023 • Yiran Mao, Madeline G. Reinecke, Markus Kunesch, Edgar A. Duéñez-Guzmán, Ramona Comanescu, Julia Haas, Joel Z. Leibo
Is it possible to evaluate the moral cognition of complex artificial agents?
no code implementations • 30 Sep 2022 • Jordi Grau-Moya, Grégoire Delétang, Markus Kunesch, Tim Genewein, Elliot Catt, Kevin Li, Anian Ruoss, Chris Cundy, Joel Veness, Jane Wang, Marcus Hutter, Christopher Summerfield, Shane Legg, Pedro Ortega
This is in contrast to risk-sensitive agents, which additionally exploit the higher-order moments of the return, and ambiguity-sensitive agents, which act differently when recognizing situations in which they lack knowledge.
no code implementations • 23 Mar 2022 • Rob Brekelmans, Tim Genewein, Jordi Grau-Moya, Grégoire Delétang, Markus Kunesch, Shane Legg, Pedro Ortega
Policy regularization methods such as maximum entropy regularization are widely used in reinforcement learning to improve the robustness of a learned policy.
no code implementations • 4 Nov 2021 • Grégoire Delétang, Jordi Grau-Moya, Markus Kunesch, Tim Genewein, Rob Brekelmans, Shane Legg, Pedro A. Ortega
Since the Gaussian free energy is known to be a certainty-equivalent sensitive to the mean and the variance, the learning rule has applications in risk-sensitive decision-making.
no code implementations • 20 Oct 2021 • Pedro A. Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Joel Veness, Jonas Buchli, Jonas Degrave, Bilal Piot, Julien Perolat, Tom Everitt, Corentin Tallec, Emilio Parisotto, Tom Erez, Yutian Chen, Scott Reed, Marcus Hutter, Nando de Freitas, Shane Legg
The recent phenomenal success of language models has reinvigorated machine learning research, and large sequence models such as transformers are being applied to a variety of domains.
no code implementations • NeurIPS 2021 • Grégoire Delétang, Jordi Grau-Moya, Markus Kunesch, Tim Genewein, Rob Brekelmans, Shane Legg, Pedro A Ortega
Since the Gaussian free energy is known to be a certainty-equivalent sensitive to the mean and the variance, the learning rule has applications in risk-sensitive decision-making.
no code implementations • 5 Mar 2021 • Grégoire Déletang, Jordi Grau-Moya, Miljan Martic, Tim Genewein, Tom McGrath, Vladimir Mikulik, Markus Kunesch, Shane Legg, Pedro A. Ortega
As machine learning systems become more powerful they also become increasingly unpredictable and opaque.
no code implementations • 14 Oct 2020 • Damien de Mijolla, Christopher Frye, Markus Kunesch, John Mansir, Ilya Feige
The importance of explainability in machine learning continues to grow, as both neural-network architectures and the data they model become increasingly complex.