1 code implementation • 14 Sep 2022 • Shuai Chen, Antonio Garcia-Uceda, Jiahang Su, Gijs van Tulder, Lennard Wolff, Theo van Walsum, Marleen de Bruijne
In this paper, we propose a novel label refinement method to correct such errors from an initial segmentation, implicitly incorporating information about label structure.
no code implementations • 15 Aug 2022 • Carole H. Sudre, Kimberlin Van Wijnen, Florian Dubost, Hieab Adams, David Atkinson, Frederik Barkhof, Mahlet A. Birhanu, Esther E. Bron, Robin Camarasa, Nish Chaturvedi, Yuan Chen, Zihao Chen, Shuai Chen, Qi Dou, Tavia Evans, Ivan Ezhov, Haojun Gao, Marta Girones Sanguesa, Juan Domingo Gispert, Beatriz Gomez Anson, Alun D. Hughes, M. Arfan Ikram, Silvia Ingala, H. Rolf Jaeger, Florian Kofler, Hugo J. Kuijf, Denis Kutnar, Minho Lee, Bo Li, Luigi Lorenzini, Bjoern Menze, Jose Luis Molinuevo, Yiwei Pan, Elodie Puybareau, Rafael Rehwald, Ruisheng Su, Pengcheng Shi, Lorna Smith, Therese Tillin, Guillaume Tochon, Helene Urien, Bas H. M. van der Velden, Isabelle F. van der Velpen, Benedikt Wiestler, Frank J. Wolters, Pinar Yilmaz, Marius de Groot, Meike W. Vernooij, Marleen de Bruijne
This challenge aimed to promote the development of methods for automated detection and segmentation of small and sparse imaging markers of cerebral small vessel disease, namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes of presumed vascular origin (Task 3) while leveraging weak and noisy labels.
no code implementations • 22 Sep 2021 • Robin Camarasa, Daniel Bos, Jeroen Hendrikse, Paul Nederkoorn, M. Eline Kooi, Aad van der Lugt, Marleen de Bruijne
This paper highlights a systematic approach to define and quantitatively compare those methods in two different contexts: class-specific epistemic uncertainty maps (one value per image, voxel and class) and combined epistemic uncertainty maps (one value per image and voxel).
no code implementations • 9 Aug 2021 • Alain Lalande, Zhihao Chen, Thibaut Pommier, Thomas Decourselle, Abdul Qayyum, Michel Salomon, Dominique Ginhac, Youssef Skandarani, Arnaud Boucher, Khawla Brahim, Marleen de Bruijne, Robin Camarasa, Teresa M. Correia, Xue Feng, Kibrom B. Girum, Anja Hennemuth, Markus Huellebrand, Raabid Hussain, Matthias Ivantsits, Jun Ma, Craig Meyer, Rishabh Sharma, Jixi Shi, Nikolaos V. Tsekos, Marta Varela, Xiyue Wang, Sen yang, Hannu Zhang, Yichi Zhang, Yuncheng Zhou, Xiahai Zhuang, Raphael Couturier, Fabrice Meriaudeau
The publicly available database consists of 150 exams divided into 50 cases with normal MRI after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department.
no code implementations • 20 Jul 2021 • Gerda Bortsova, Daniel Bos, Florian Dubost, Meike W. Vernooij, M. Kamran Ikram, Gijs van Tulder, Marleen de Bruijne
To evaluate the method, we compared manual and automatic assessment (computed using ten-fold cross-validation) with respect to 1) the agreement with an independent observer's assessment (available in a random subset of 47 scans); 2) the accuracy in delineating ICAC as judged via blinded visual comparison by an expert; 3) the association with first stroke incidence from the scan date until 2012.
no code implementations • 31 Mar 2021 • Gerda Bortsova, Florian Dubost, Laurens Hogeweg, Ioannis Katramados, Marleen de Bruijne
Previous studies have shown that it is possible to adversarially manipulate automated segmentations produced by neural networks in a targeted manner in the white-box attack setting.
1 code implementation • 20 Nov 2020 • Veronika Cheplygina, Adria Perez-Rovira, Wieying Kuo, Harm A. W. M. Tiddens, Marleen de Bruijne
We generate image slices at known locations of airways in 24 subjects and request the crowd workers to outline the airway lumen and airway wall.
no code implementations • 29 Jun 2020 • Tal Arbel, Ismail Ben Ayed, Marleen de Bruijne, Maxime Descoteaux, Herve Lombaert, Chris Pal
This compendium gathers all the accepted extended abstracts from the Third International Conference on Medical Imaging with Deep Learning (MIDL 2020), held in Montreal, Canada, 6-9 July 2020.
1 code implementation • 26 Jun 2020 • Subhradeep Kayal, Shuai Chen, Marleen de Bruijne
Self-supervised learning has proven to be invaluable in making best use of all of the available data in biomedical image segmentation.
2 code implementations • 18 Jun 2020 • Soumick Chatterjee, Kartik Prabhu, Mahantesh Pattadkal, Gerda Bortsova, Chompunuch Sarasaen, Florian Dubost, Hendrik Mattern, Marleen de Bruijne, Oliver Speck, Andreas Nürnberger
The deep learning model based on U-Net Multi-Scale Supervision was trained using the training subset and was made equivariant to elastic deformations in a self-supervised manner using deformation-aware learning to improve the generalisation performance.
1 code implementation • 11 Jun 2020 • Gerda Bortsova, Cristina González-Gonzalo, Suzanne C. Wetstein, Florian Dubost, Ioannis Katramados, Laurens Hogeweg, Bart Liefers, Bram van Ginneken, Josien P. W. Pluim, Mitko Veta, Clara I. Sánchez, Marleen de Bruijne
Firstly, we study the effect of weight initialization (ImageNet vs. random) on the transferability of adversarial attacks from the surrogate model to the target model.
no code implementations • 24 Apr 2020 • Subhradeep Kayal, Florian Dubost, Harm A. W. M. Tiddens, Marleen de Bruijne
Data augmentation is of paramount importance in biomedical image processing tasks, characterized by inadequate amounts of labelled data, to best use all of the data that is present.
no code implementations • 12 Apr 2020 • Oliver Werner, Kimberlin M. H. van Wijnen, Wiro J. Niessen, Marius de Groot, Meike W. Vernooij, Florian Dubost, Marleen de Bruijne
We showed that networks optimized using only weak labels reflecting WMH volume generalized better for WMH volume prediction than networks optimized with voxel-wise segmentations of WMH.
no code implementations • 4 Nov 2019 • Gerda Bortsova, Florian Dubost, Laurens Hogeweg, Ioannis Katramados, Marleen de Bruijne
In this paper, we propose a novel semi-supervised method that, in addition to supervised learning on labeled training images, learns to predict segmentations consistent under a given class of transformations on both labeled and unlabeled images.
1 code implementation • 4 Nov 2019 • Florian Dubost, Benjamin Collery, Antonin Renaudier, Axel Roc, Nicolas Posocco, Gerda Bortsova, Wiro Niessen, Marleen de Bruijne
For diagnosis and treatment planning of scoliosis, spinal curvature can be estimated using Cobb angles.
no code implementations • 19 Sep 2019 • Chaoping Zhang, Florian Dubost, Marleen de Bruijne, Stefan Klein, Dirk H. J. Poot
Deep learning has been successfully demonstrated in MRI reconstruction of accelerated acquisitions.
no code implementations • 22 Aug 2019 • Antonio Garcia-Uceda Juarez, Raghavendra Selvan, Zaigham Saghir, Marleen de Bruijne
In this approach, the convolutional layers at the deepest level of the UNet are replaced by a GNN-based module with a series of graph convolutions.
no code implementations • 29 Jul 2019 • Kimberlin M. H. van Wijnen, Florian Dubost, Pinar Yilmaz, M. Arfan Ikram, Wiro J. Niessen, Hieab Adams, Meike W. Vernooij, Marleen de Bruijne
We show the potential of this approach to detect enlarged perivascular spaces in white matter on a large brain MRI dataset with an independent test set of 1000 scans.
1 code implementation • 29 Jul 2019 • Shuai Chen, Gerda Bortsova, Antonio Garcia-Uceda Juarez, Gijs van Tulder, Marleen de Bruijne
The reconstruction objective uses an attention mechanism that separates the reconstruction of image areas corresponding to different classes.
1 code implementation • 1 Jul 2019 • Florian Dubost, Marleen de Bruijne, Marco Nardin, Adrian V. Dalca, Kathleen L. Donahue, Anne-Katrin Giese, Mark R. Etherton, Ona Wu, Marius de Groot, Wiro Niessen, Meike Vernooij, Natalia S. Rost, Markus D. Schirmer
In this work, we propose to automatically assess the quality of registration to an atlas in clinical FLAIR MRI scans of the brain.
no code implementations • 5 Jun 2019 • Florian Dubost, Hieab Adams, Pinar Yilmaz, Gerda Bortsova, Gijs van Tulder, M. Arfan Ikram, Wiro Niessen, Meike Vernooij, Marleen de Bruijne
For comparison, we modify state-of-the-art methods to compute attention maps for weakly supervised object detection, by using a global regression objective instead of the more conventional classification objective.
1 code implementation • 11 Mar 2019 • Wouter M. Kouw, Silas N. Ørting, Jens Petersen, Kim S. Pedersen, Marleen de Bruijne
Here we present a smoothness prior that is fit to segmentations produced at another medical center.
no code implementations • 8 Mar 2019 • Vikram Venkatraghavan, Florian Dubost, Esther E. Bron, Wiro J. Niessen, Marleen de Bruijne, Stefan Klein
In order to validate the biomarker ordering obtained using nDEBM, we also present a framework for Simulation of Imaging Biomarkers' Temporal Evolution (SImBioTE) that mimics neurodegeneration in brain regions.
1 code implementation • 21 Nov 2018 • Raghavendra Selvan, Thomas Kipf, Max Welling, Antonio Garcia-Uceda Juarez, Jesper H. Pedersen, Jens Petersen, Marleen de Bruijne
Graph refinement, or the task of obtaining subgraphs of interest from over-complete graphs, can have many varied applications.
no code implementations • 8 Nov 2018 • Shuai Chen, Marleen de Bruijne
Fully-connected Conditional Random Field (CRF) is often used as post-processing to refine voxel classification results by encouraging spatial coherence.
no code implementations • 17 Oct 2018 • Silas Nyboe Ørting, Jens Petersen, Laura H. Thomsen, Mathilde M. W. Wille, Marleen de Bruijne
We evaluate performance on 600 low-dose CT scans from the Danish Lung Cancer Screening Trial and find that learning from emphysema presence labels, which are much easier to obtain, gives equally good performance to learning from emphysema extent labels.
no code implementations • 23 Jul 2018 • Gerda Bortsova, Florian Dubost, Silas Ørting, Ioannis Katramados, Laurens Hogeweg, Laura Thomsen, Mathilde Wille, Marleen de Bruijne
We propose an end-to-end deep learning method that learns to estimate emphysema extent from proportions of the diseased tissue.
no code implementations • 12 Jul 2018 • Florian Dubost, Gerda Bortsova, Hieab Adams, M. Arfan Ikram, Wiro Niessen, Meike Vernooij, Marleen de Bruijne
The proposed method reached an intraclass correlation coefficient between ground truth and network predictions of 0. 73 on the first task and 0. 84 on the second task, only using between 25 and 30 scans with a single global label per scan for training.
no code implementations • 23 Jun 2018 • Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, Marleen de Bruijne
We propose to use statistical ranking of local hypotheses in constructing the MHT tree, which yields a probabilistic interpretation of scores across scales and helps alleviate the scale-dependence of MHT parameters.
no code implementations • 19 Jun 2018 • Silas Nyboe Ørting, Jens Petersen, Veronika Cheplygina, Laura H. Thomsen, Mathilde M. W. Wille, Marleen de Bruijne
We evaluate the networks on 973 images, and show that the CNNs can learn disease relevant feature representations from derived similarity triplets.
no code implementations • 17 Apr 2018 • Veronika Cheplygina, Marleen de Bruijne, Josien P. W. Pluim
Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging.
no code implementations • 12 Apr 2018 • Raghavendra Selvan, Thomas Kipf, Max Welling, Jesper H. Pedersen, Jens Petersen, Marleen de Bruijne
We present extraction of tree structures, such as airways, from image data as a graph refinement task.
no code implementations • 10 Apr 2018 • Raghavendra Selvan, Max Welling, Jesper H. Pedersen, Jens Petersen, Marleen de Bruijne
Performance of the method is compared with two methods: the first uses probability images from a trained voxel classifier with region growing, which is similar to one of the best performing methods at EXACT'09 airway challenge, and the second method is based on Bayesian smoothing on these probability images.
no code implementations • 21 Mar 2018 • Filipe Marques, Florian Dubost, Mariette Kemner-van de Corput, Harm A. W. Tiddens, Marleen de Bruijne
We compare our method with random forest and a single neural network approach.
no code implementations • 16 Feb 2018 • Florian Dubost, Hieab Adams, Gerda Bortsova, M. Arfan Ikram, Wiro Niessen, Meike Vernooij, Marleen de Bruijne
We propose a convolutional network regression method to quantify the extent of EPVS in the basal ganglia from 3D brain MRI.
no code implementations • 7 Aug 2017 • Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, Marleen de Bruijne
The evolution of individual branches is modelled using a process model and the observed data is incorporated into the update step of the Bayesian smoother using a measurement model that is based on a multi-scale blob detector.
no code implementations • 7 Jun 2017 • Isabel Pino Peña, Veronika Cheplygina, Sofia Paschaloudi, Morten Vuust, Jesper Carl, Ulla Møller Weinreich, Lasse Riis Østergaard, Marleen de Bruijne
The classifier has a stronger correlation with PFT than the density based method, the percentage of emphysema in the intersection of annotations from both radiologists, and the percentage of emphysema annotated by one of the radiologists.
no code implementations • 7 Jun 2017 • Veronika Cheplygina, Adria Perez-Rovira, Wieying Kuo, Harm A. W. M. Tiddens, Marleen de Bruijne
Measuring airways in chest computed tomography (CT) images is important for characterizing diseases such as cystic fibrosis, yet very time-consuming to perform manually.
no code implementations • 4 Jun 2017 • Gerda Bortsova, Gijs van Tulder, Florian Dubost, Tingying Peng, Nassir Navab, Aad van der Lugt, Daniel Bos, Marleen de Bruijne
In this paper, we propose a method for automatic segmentation of ICAC; the first to our knowledge.
no code implementations • 22 May 2017 • Florian Dubost, Gerda Bortsova, Hieab Adams, Arfan Ikram, Wiro Niessen, Meike Vernooij, Marleen de Bruijne
We train a regression network with a fully convolutional architecture combined with a global pooling layer to aggregate the 3D output into a scalar indicating the lesion count.
no code implementations • 15 Mar 2017 • Veronika Cheplygina, Lauge Sørensen, David M. J. Tax, Jesper Holst Pedersen, Marco Loog, Marleen de Bruijne
Chronic obstructive pulmonary disease (COPD) is a lung disease where early detection benefits the survival rate.
no code implementations • 15 Mar 2017 • Veronika Cheplygina, Annegreet van Opbroek, M. Arfan Ikram, Meike W. Vernooij, Marleen de Bruijne
We show that the asymmetry can indeed be informative, and that computing the similarity from the test image to the training images is more appropriate than the opposite direction.
no code implementations • 15 Mar 2017 • Veronika Cheplygina, Lauge Sørensen, David M. J. Tax, Marleen de Bruijne, Marco Loog
We address the problem of \emph{instance label stability} in multiple instance learning (MIL) classifiers.
no code implementations • 18 Jan 2017 • Veronika Cheplygina, Isabel Pino Peña, Jesper Holst Pedersen, David A. Lynch, Lauge Sørensen, Marleen de Bruijne
We show that Gaussian texture features outperform intensity features previously used in multi-center classification tasks.
no code implementations • 24 Nov 2016 • Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, Marleen de Bruijne
The results show improvements in performance when compared to the original method and region growing on intensity images.
no code implementations • NeurIPS 2013 • Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, Karsten Borgwardt
While graphs with continuous node attributes arise in many applications, state-of-the-art graph kernels for comparing continuous-attributed graphs suffer from a high runtime complexity; for instance, the popular shortest path kernel scales as $\mathcal{O}(n^4)$, where $n$ is the number of nodes.
no code implementations • 29 Mar 2013 • Aasa Feragen, Jens Petersen, Dominik Grimm, Asger Dirksen, Jesper Holst Pedersen, Karsten Borgwardt, Marleen de Bruijne
Methodological contributions: This paper introduces a family of kernels for analyzing (anatomical) trees endowed with vector valued measurements made along the tree.