1 code implementation • 17 Jun 2024 • Rick Wilming, Artur Dox, Hjalmar Schulz, Marta Oliveira, Benedict Clark, Stefan Haufe
This gives rise to ground-truth 'world explanations' for gender classification tasks, enabling the objective evaluation of the correctness of XAI methods.
no code implementations • 20 May 2024 • Benedict Clark, Rick Wilming, Artur Dox, Paul Eschenbach, Sami Hached, Daniel Jin Wodke, Michias Taye Zewdie, Uladzislau Bruila, Marta Oliveira, Hjalmar Schulz, Luca Matteo Cornils, Danny Panknin, Ahcène Boubekki, Stefan Haufe
The evolving landscape of explainable artificial intelligence (XAI) aims to improve the interpretability of intricate machine learning (ML) models, yet faces challenges in formalisation and empirical validation, being an inherently unsupervised process.
1 code implementation • 21 Jun 2023 • Marta Oliveira, Rick Wilming, Benedict Clark, Céline Budding, Fabian Eitel, Kerstin Ritter, Stefan Haufe
Here, we propose a benchmark dataset that allows for quantifying explanation performance in a realistic magnetic resonance imaging (MRI) classification task.
Explainable artificial intelligence Explainable Artificial Intelligence (XAI) +2