no code implementations • EACL (LTEDI) 2021 • Christine Basta, Marta R. Costa-Jussa
This study sheds light on the effects of COVID-19 in the particular field of Computational Linguistics and Natural Language Processing within Artificial Intelligence.
no code implementations • ICON 2021 • Carlos Escolano, Graciela Ojeda, Christine Basta, Marta R. Costa-Jussa
Machine Translation is highly impacted by social biases present in data sets, indicating that it reflects and amplifies stereotypes.
no code implementations • WMT (EMNLP) 2021 • Farhad Akhbardeh, Arkady Arkhangorodsky, Magdalena Biesialska, Ondřej Bojar, Rajen Chatterjee, Vishrav Chaudhary, Marta R. Costa-Jussa, Cristina España-Bonet, Angela Fan, Christian Federmann, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Leonie Harter, Kenneth Heafield, Christopher Homan, Matthias Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai, Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp Koehn, Nicholas Lourie, Christof Monz, Makoto Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki Nakazawa, Matteo Negri, Santanu Pal, Allahsera Auguste Tapo, Marco Turchi, Valentin Vydrin, Marcos Zampieri
This paper presents the results of the newstranslation task, the multilingual low-resourcetranslation for Indo-European languages, thetriangular translation task, and the automaticpost-editing task organised as part of the Con-ference on Machine Translation (WMT) 2021. In the news task, participants were asked tobuild machine translation systems for any of10 language pairs, to be evaluated on test setsconsisting mainly of news stories.
no code implementations • WMT (EMNLP) 2021 • Carlos Escolano, Ioannis Tsiamas, Christine Basta, Javier Ferrando, Marta R. Costa-Jussa, José A. R. Fonollosa
We fine-tune mBART50 using the filtered data, and additionally, we train a Transformer model on the same data from scratch.