1 code implementation • IWSLT (ACL) 2022 • Ioannis Tsiamas, Gerard I. Gállego, Carlos Escolano, José Fonollosa, Marta R. Costa-jussà
We further investigate the suitability of different speech encoders (wav2vec 2. 0, HuBERT) for our models and the impact of knowledge distillation from the Machine Translation model that we use for the decoder (mBART).
no code implementations • WMT (EMNLP) 2020 • Pere Vergés Boncompte, Marta R. Costa-jussà
We made use of different techniques to improve the translation between these languages.
no code implementations • WMT (EMNLP) 2020 • Luis A. Menéndez-Salazar, Grigori Sidorov, Marta R. Costa-jussà
This paper describes the participation of the NLP research team of the IPN Computer Research center in the WMT 2020 Similar Language Translation Task.
no code implementations • WMT (EMNLP) 2020 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
In this article, we describe the TALP-UPC participation in the WMT20 news translation shared task for Tamil-English.
no code implementations • WMT (EMNLP) 2020 • Loïc Barrault, Magdalena Biesialska, Marta R. Costa-jussà, Fethi Bougares, Olivier Galibert
A lifelong learning system can adapt to new data without forgetting previously acquired knowledge.
no code implementations • EcomNLP (COLING) 2020 • Bardia Rafieian, Marta R. Costa-jussà
In this paper, we present two productive and functional recommender methods to improve the ac- curacy of predicting the right product for the user.
no code implementations • GeBNLP (COLING) 2020 • Marta R. Costa-jussà, Adrià de Jorge
Misrepresentation of certain communities in datasets is causing big disruptions in artificial intelligence applications.
1 code implementation • 11 Dec 2024 • LCM team, Loïc Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussà, David Dale, Hady Elsahar, Kevin Heffernan, João Maria Janeiro, Tuan Tran, Christophe Ropers, Eduardo Sánchez, Robin San Roman, Alexandre Mourachko, Safiyyah Saleem, Holger Schwenk
In this paper, we present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept.
no code implementations • 11 Dec 2024 • Marta R. Costa-jussà, Pierre Andrews, Mariano Coria Meglioli, Joy Chen, Joe Chuang, David Dale, Christophe Ropers, Alexandre Mourachko, Eduardo Sánchez, Holger Schwenk, Tuan Tran, Arina Turkatenko, Carleigh Wood
The primary motivation behind providing summaries of different lengths is to establish a controllable framework for generating long texts from shorter inputs, i. e. summary expansion.
no code implementations • 11 Dec 2024 • Marta R. Costa-jussà, Bokai Yu, Pierre Andrews, Belen Alastruey, Necati Cihan Camgoz, Joe Chuang, Jean Maillard, Christophe Ropers, Arina Turkantenko, Carleigh Wood
We introduce the first highly multilingual speech and American Sign Language (ASL) comprehension dataset by extending BELEBELE.
no code implementations • 11 Dec 2024 • Marta R. Costa-jussà, Joy Chen, Ifeoluwanimi Adebara, Joe Chuang, Christophe Ropers, Eduardo Sánchez
The purpose of this work is to share an English-Yor\`ub\'a evaluation dataset for open-book reading comprehension and text generation to assess the performance of models both in a high- and a low- resource language.
no code implementations • 12 Nov 2024 • Samuel J. Bell, Mariano Coria Meglioli, Megan Richards, Eduardo Sánchez, Christophe Ropers, Skyler Wang, Adina Williams, Levent Sagun, Marta R. Costa-jussà
Text toxicity detection systems exhibit significant biases, producing disproportionate rates of false positives on samples mentioning demographic groups.
1 code implementation • 9 Oct 2024 • Javier Ferrando, Marta R. Costa-jussà
Notably, this subject number signal is represented as a direction in the residual stream space, and is language-independent.
no code implementations • 26 Sep 2024 • Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussà
Hence, we hypothesize that this issue stems from the difficulty of effectively training an encoder for direct speech translation.
1 code implementation • 18 Sep 2024 • Eduardo Sánchez, Belen Alastruey, Christophe Ropers, Pontus Stenetorp, Mikel Artetxe, Marta R. Costa-jussà
We propose a new benchmark to measure a language model's linguistic reasoning skills without relying on pre-existing language-specific knowledge.
no code implementations • 29 Jun 2024 • Xiaoqing Ellen Tan, Prangthip Hansanti, Carleigh Wood, Bokai Yu, Christophe Ropers, Marta R. Costa-jussà
In the current landscape of automatic language generation, there is a need to understand, evaluate, and mitigate demographic biases as existing models are becoming increasingly multilingual.
no code implementations • 30 Apr 2024 • Javier Ferrando, Gabriele Sarti, Arianna Bisazza, Marta R. Costa-jussà
The rapid progress of research aimed at interpreting the inner workings of advanced language models has highlighted a need for contextualizing the insights gained from years of work in this area.
1 code implementation • 16 Feb 2024 • Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, Marta R. Costa-jussà
The speech encoder seamlessly integrates with the MT model at inference, enabling direct translation from speech to text, across all languages supported by the MT model.
no code implementations • 29 Jan 2024 • Christophe Ropers, David Dale, Prangthip Hansanti, Gabriel Mejia Gonzalez, Ivan Evtimov, Corinne Wong, Christophe Touret, Kristina Pereyra, Seohyun Sonia Kim, Cristian Canton Ferrer, Pierre Andrews, Marta R. Costa-jussà
Assessing performance in Natural Language Processing is becoming increasingly complex.
1 code implementation • 10 Jan 2024 • Marta R. Costa-jussà, Mariano Coria Meglioli, Pierre Andrews, David Dale, Prangthip Hansanti, Elahe Kalbassi, Alex Mourachko, Christophe Ropers, Carleigh Wood
Research in toxicity detection in natural language processing for the speech modality (audio-based) is quite limited, particularly for languages other than English.
1 code implementation • 8 Dec 2023 • Seamless Communication, Loïc Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia Gonzalez, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-jussà, Maha Elbayad, Hongyu Gong, Francisco Guzmán, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alex Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson
In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion.
automatic-speech-translation Multimodal Machine Translation +2
no code implementations • 11 Nov 2023 • Marta R. Costa-jussà, David Dale, Maha Elbayad, Bokai Yu
MinTox uses a toxicity detection classifier which is multimodal (speech and text) and works in languages at scale.
no code implementations • 20 Sep 2023 • Belen Alastruey, Aleix Sant, Gerard I. Gállego, David Dale, Marta R. Costa-jussà
In doing so, we contribute to the ongoing research progress within the fields of Speech-to-Speech and Speech-to-Text translation.
no code implementations • 6 Sep 2023 • Eduardo Sánchez, Pierre Andrews, Pontus Stenetorp, Mikel Artetxe, Marta R. Costa-jussà
While machine translation (MT) systems have seen significant improvements, it is still common for translations to reflect societal biases, such as gender bias.
1 code implementation • 31 Aug 2023 • Benjamin Muller, Belen Alastruey, Prangthip Hansanti, Elahe Kalbassi, Christophe Ropers, Eric Michael Smith, Adina Williams, Luke Zettlemoyer, Pierre Andrews, Marta R. Costa-jussà
We showcase it to report gender representation in WMT training data and development data for the News task, confirming that current data is skewed towards masculine representation.
4 code implementations • 22 Aug 2023 • Seamless Communication, Loïc Barrault, Yu-An Chung, Mariano Cora Meglioli, David Dale, Ning Dong, Paul-Ambroise Duquenne, Hady Elsahar, Hongyu Gong, Kevin Heffernan, John Hoffman, Christopher Klaiber, Pengwei Li, Daniel Licht, Jean Maillard, Alice Rakotoarison, Kaushik Ram Sadagopan, Guillaume Wenzek, Ethan Ye, Bapi Akula, Peng-Jen Chen, Naji El Hachem, Brian Ellis, Gabriel Mejia Gonzalez, Justin Haaheim, Prangthip Hansanti, Russ Howes, Bernie Huang, Min-Jae Hwang, Hirofumi Inaguma, Somya Jain, Elahe Kalbassi, Amanda Kallet, Ilia Kulikov, Janice Lam, Daniel Li, Xutai Ma, Ruslan Mavlyutov, Benjamin Peloquin, Mohamed Ramadan, Abinesh Ramakrishnan, Anna Sun, Kevin Tran, Tuan Tran, Igor Tufanov, Vish Vogeti, Carleigh Wood, Yilin Yang, Bokai Yu, Pierre Andrews, Can Balioglu, Marta R. Costa-jussà, Onur Celebi, Maha Elbayad, Cynthia Gao, Francisco Guzmán, Justine Kao, Ann Lee, Alexandre Mourachko, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang
What does it take to create the Babel Fish, a tool that can help individuals translate speech between any two languages?
Ranked #1 on Speech-to-Speech Translation on CVSS (using extra training data)
Automatic Speech Recognition Speech-to-Speech Translation +4
no code implementations • 2 Jun 2023 • Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, Marta R. Costa-jussà
Our Speech Translation systems utilize foundation models for speech (wav2vec 2. 0) and text (mBART50).
no code implementations • 22 May 2023 • Marta R. Costa-jussà, Pierre Andrews, Eric Smith, Prangthip Hansanti, Christophe Ropers, Elahe Kalbassi, Cynthia Gao, Daniel Licht, Carleigh Wood
Our initial findings show that translation quality for EN-to-XX translations is an average of 8 spBLEU better when evaluating with the masculine human reference compared to feminine.
1 code implementation • 21 May 2023 • Javier Ferrando, Gerard I. Gállego, Ioannis Tsiamas, Marta R. Costa-jussà
Language Generation Models produce words based on the previous context.
1 code implementation • 19 May 2023 • David Dale, Elena Voita, Janice Lam, Prangthip Hansanti, Christophe Ropers, Elahe Kalbassi, Cynthia Gao, Loïc Barrault, Marta R. Costa-jussà
Hallucinations in machine translation are translations that contain information completely unrelated to the input.
1 code implementation • 19 May 2023 • Javier García Gilabert, Carlos Escolano, Marta R. Costa-jussà
Our proposed method, ReSeTOX (REdo SEarch if TOXic), addresses the issue of Neural Machine Translation (NMT) generating translation outputs that contain toxic words not present in the input.
1 code implementation • 19 Dec 2022 • Ioannis Tsiamas, José A. R. Fonollosa, Marta R. Costa-jussà
End-to-end Speech Translation is hindered by a lack of available data resources.
1 code implementation • 16 Dec 2022 • Mingda Chen, Paul-Ambroise Duquenne, Pierre Andrews, Justine Kao, Alexandre Mourachko, Holger Schwenk, Marta R. Costa-jussà
In this paper, we propose a text-free evaluation metric for end-to-end S2ST, named BLASER, to avoid the dependency on ASR systems.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +3
no code implementations • 16 Dec 2022 • David Dale, Elena Voita, Loïc Barrault, Marta R. Costa-jussà
We propose to use a method that evaluates the percentage of the source contribution to a generated translation.
1 code implementation • 28 Oct 2022 • Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, Marta R. Costa-jussà
Transformers have been the dominant architecture for Speech Translation in recent years, achieving significant improvements in translation quality.
no code implementations • 6 Oct 2022 • Marta R. Costa-jussà, Eric Smith, Christophe Ropers, Daniel Licht, Jean Maillard, Javier Ferrando, Carlos Escolano
We evaluate and analyze added toxicity when translating a large evaluation dataset (HOLISTICBIAS, over 472k sentences, covering 13 demographic axes) from English into 164 languages.
9 code implementations • Meta AI 2022 • NLLB team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Jeff Wang
Driven by the goal of eradicating language barriers on a global scale, machine translation has solidified itself as a key focus of artificial intelligence research today.
Ranked #1 on Machine Translation on IWSLT2017 French-English (SacreBLEU metric)
1 code implementation • 23 May 2022 • Javier Ferrando, Gerard I. Gállego, Belen Alastruey, Carlos Escolano, Marta R. Costa-jussà
In Neural Machine Translation (NMT), each token prediction is conditioned on the source sentence and the target prefix (what has been previously translated at a decoding step).
no code implementations • NAACL (ACL) 2022 • Gerard Sant, Gerard I. Gállego, Belen Alastruey, Marta R. Costa-jussà
Different approaches have been proposed to overcome these problems, such as the use of efficient attention mechanisms.
no code implementations • ACL 2022 • Belen Alastruey, Javier Ferrando, Gerard I. Gállego, Marta R. Costa-jussà
Transformers have achieved state-of-the-art results across multiple NLP tasks.
2 code implementations • 8 Mar 2022 • Javier Ferrando, Gerard I. Gállego, Marta R. Costa-jussà
The Transformer architecture aggregates input information through the self-attention mechanism, but there is no clear understanding of how this information is mixed across the entire model.
1 code implementation • 12 Feb 2022 • Oriol Domingo, Marta R. Costa-jussà, Carlos Escolano
The proposed solution, a T5 architecture, is trained in a multi-task semi-supervised environment, with our collected non-parallel data, following a cycle training regime.
2 code implementations • 9 Feb 2022 • Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, Marta R. Costa-jussà
Speech translation datasets provide manual segmentations of the audios, which are not available in real-world scenarios, and existing segmentation methods usually significantly reduce translation quality at inference time.
no code implementations • Findings (EMNLP) 2021 • Javier Ferrando, Marta R. Costa-jussà
This work proposes an extensive analysis of the Transformer architecture in the Neural Machine Translation (NMT) setting.
no code implementations • 7 Jul 2021 • Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussà
When working with speech, we must face a problem: the sequence length of an audio input is not suitable for the Transformer.
1 code implementation • ACL (IWSLT) 2021 • Gerard I. Gállego, Ioannis Tsiamas, Carlos Escolano, José A. R. Fonollosa, Marta R. Costa-jussà
Our submission also uses a custom segmentation algorithm that employs pre-trained Wav2Vec 2. 0 for identifying periods of untranscribable text and can bring improvements of 2. 5 to 3 BLEU score on the IWSLT 2019 test set, as compared to the result with the given segmentation.
Ranked #2 on Speech-to-Text Translation on MuST-C EN->DE (using extra training data)
no code implementations • 3 May 2021 • Christine Basta, Marta R. Costa-jussà
Gender, race and social biases have recently been detected as evident examples of unfairness in applications of Natural Language Processing.
no code implementations • 7 Apr 2021 • Christian Hardmeier, Marta R. Costa-jussà, Kellie Webster, Will Radford, Su Lin Blodgett
At the Workshop on Gender Bias in NLP (GeBNLP), we'd like to encourage authors to give explicit consideration to the wider aspects of bias and its social implications.
1 code implementation • 17 Feb 2021 • Noe Casas, Jose A. R. Fonollosa, Marta R. Costa-jussà
The standard approach to incorporate linguistic information to neural machine translation systems consists in maintaining separate vocabularies for each of the annotated features to be incorporated (e. g. POS tags, dependency relation label), embed them, and then aggregate them with each subword in the word they belong to.
no code implementations • 24 Dec 2020 • Marta R. Costa-jussà, Carlos Escolano, Christine Basta, Javier Ferrando, Roser Batlle, Ksenia Kharitonova
Multilingual Neural Machine Translation architectures mainly differ in the amount of sharing modules and parameters among languages.
no code implementations • COLING 2020 • Magdalena Biesialska, Katarzyna Biesialska, Marta R. Costa-jussà
However, it is difficult for existing deep learning architectures to learn a new task without largely forgetting previously acquired knowledge.
no code implementations • EMNLP 2020 • Loïc Barrault, Magdalena Biesialska, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Matthias Huck, Eric Joanis, Tom Kocmi, Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof Monz, Makoto Morishita, Masaaki Nagata, Toshiaki Nakazawa, Santanu Pal, Matt Post, Marcos Zampieri
In the news task, participants were asked to build machine translation systems for any of 11 language pairs, to be evaluated on test sets consisting mainly of news stories.
no code implementations • 2 Nov 2020 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa, Carlos Segura
On the other hand, Multilingual Neural Machine Translation (MultiNMT) approaches rely on higher-quality and more massive data sets.
no code implementations • LREC 2022 • Marta R. Costa-jussà, Christine Basta, Gerard I. Gállego
WinoST is the speech version of WinoMT which is a MT challenge set and both follow an evaluation protocol to measure gender accuracy.
no code implementations • 29 May 2020 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa, Mikel Artetxe
We propose a modular architecture of language-specific encoder-decoders that constitutes a multilingual machine translation system that can be incrementally extended to new languages without the need for retraining the existing system when adding new languages.
no code implementations • 27 May 2020 • Marta R. Costa-jussà, Roger Creus, Oriol Domingo, Albert Domínguez, Miquel Escobar, Cayetana López, Marina Garcia, Margarita Geleta
In this report we are taking the standardized model proposed by Gebru et al. (2018) for documenting the popular machine translation datasets of the EuroParl (Koehn, 2005) and News-Commentary (Barrault et al., 2019).
1 code implementation • ACL 2020 • Magdalena Biesialska, Bardia Rafieian, Marta R. Costa-jussà
In this work, we present an effective method for semantic specialization of word vector representations.
no code implementations • RANLP 2021 • Jordi Armengol-Estapé, Marta R. Costa-jussà, Carlos Escolano
Introducing factors, that is to say, word features such as linguistic information referring to the source tokens, is known to improve the results of neural machine translation systems in certain settings, typically in recurrent architectures.
no code implementations • EACL 2021 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa, Mikel Artetxe
State-of-the-art multilingual machine translation relies on a universal encoder-decoder, which requires retraining the entire system to add new languages.
no code implementations • EMNLP (spnlp) 2020 • Noe Casas, José A. R. Fonollosa, Marta R. Costa-jussà
The dominant language modeling paradigm handles text as a sequence of discrete tokens.
1 code implementation • 21 Feb 2020 • Magdalena Biesialska, Marta R. Costa-jussà
In this paper, we propose a self-supervised method to refine the alignment of unsupervised bilingual word embeddings.
Bilingual Lexicon Induction Cross-Lingual Word Embeddings +1
3 code implementations • 11 Dec 2019 • Casimiro Pio Carrino, Marta R. Costa-jussà, José A. R. Fonollosa
We then used this dataset to train Spanish QA systems by fine-tuning a Multilingual-BERT model.
1 code implementation • LREC 2020 • Marta R. Costa-jussà, Pau Li Lin, Cristina España-Bonet
We introduce GeBioToolkit, a tool for extracting multilingual parallel corpora at sentence level, with document and gender information from Wikipedia biographies.
no code implementations • WS 2019 • Magdalena Biesialska, Lluis Guardia, Marta R. Costa-jussà
Although the problem of similar language translation has been an area of research interest for many years, yet it is still far from being solved.
no code implementations • IJCNLP 2019 • Carlos Escolano, Marta R. Costa-jussà, Elora Lacroux, Pere-Pau Vázquez
In this context, RNN's, CNN's and Transformer have most commonly been used as an encoder-decoder architecture with multiple layers in each module.
no code implementations • ACL 2019 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
Multilingual Neural Machine Translation approaches are based on the use of task-specific models and the addition of one more language can only be done by retraining the whole system.
2 code implementations • 16 May 2019 • José A. R. Fonollosa, Noe Casas, Marta R. Costa-jussà
The dominant neural machine translation models are based on the encoder-decoder structure, and many of them rely on an unconstrained receptive field over source and target sequences.
Ranked #10 on Machine Translation on WMT2014 English-French
no code implementations • 15 May 2019 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
By adding and forcing this interlingual loss, we are able to train multiple encoders and decoders for each language, sharing a common intermediate representation.
no code implementations • WS 2019 • Christine Basta, Marta R. Costa-jussà, Noe Casas
Gender bias is highly impacting natural language processing applications.
1 code implementation • 10 Jan 2019 • Joel Escudé Font, Marta R. Costa-jussà
We take advantage of the fact that word embeddings are used in neural machine translation to propose a method to equalize gender biases in neural machine translation using these representations.
no code implementations • 15 Oct 2018 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
Preliminary results on the WMT 2017 Turkish/English task shows that the proposed architecture is capable of learning a universal language representation and simultaneously training both translation directions with state-of-the-art results.
no code implementations • COLING 2018 • Marta R. Costa-jussà, Marcos Zampieri, Santanu Pal
In this paper we present the first neural-based machine translation system trained to translate between standard national varieties of the same language.
no code implementations • 19 Mar 2018 • Marta R. Costa-jussà, Noe Casas, Maite Melero
This paper describes the methodology followed to build a neural machine translation system in the biomedical domain for the English-Catalan language pair.
1 code implementation • WS 2017 • Han Yang, Marta R. Costa-jussà, José A. R. Fonollosa
Natural language inference (NLI) is a central problem in language understanding.
no code implementations • 7 Oct 2016 • Marta R. Costa-jussà, Carlos Escolano
In this paper, we propose to de-couple machine translation from morphology generation in order to better deal with the problem.
no code implementations • 2 Mar 2016 • Marta R. Costa-jussà, José A. R. Fonollosa
Neural Machine Translation (MT) has reached state-of-the-art results.
no code implementations • 4 Feb 2014 • Marta R. Costa-jussà, Carlos A. Henríquez, Rafael E. Banchs
Although, Chinese and Spanish are two of the most spoken languages in the world, not much research has been done in machine translation for this language pair.