no code implementations • 22 Jul 2024 • Kshitij Ingale, Sun Hae Hong, Qiyuan Hu, Renyu Zhang, Bo Osinski, Mina Khoshdeli, Josh Och, Kunal Nagpal, Martin C. Stumpe, Rohan P. Joshi
In this work, models were trained for simultaneous prediction of multiple DNA alterations from H&E images using a multi-task approach.
no code implementations • 11 Dec 2023 • Will E. Thompson, David M. Vidmar, Jessica K. De Freitas, John M. Pfeifer, Brandon K. Fornwalt, Ruijun Chen, Gabriel Altay, Kabir Manghnani, Andrew C. Nelsen, Kellie Morland, Martin C. Stumpe, Riccardo Miotto
Identifying disease phenotypes from electronic health records (EHRs) is critical for numerous secondary uses.
no code implementations • 12 Oct 2023 • Qiyuan Hu, Abbas A. Rizvi, Geoffery Schau, Kshitij Ingale, Yoni Muller, Rachel Baits, Sebastian Pretzer, Aïcha BenTaieb, Abigail Gordhamer, Roberto Nussenzveig, Adam Cole, Matthew O. Leavitt, Rohan P. Joshi, Nike Beaubier, Martin C. Stumpe, Kunal Nagpal
As such, prediction of MSI status from hematoxylin and eosin (H&E) stained whole-slide images (WSIs) could identify prostate cancer patients most likely to benefit from confirmatory testing and becoming eligible for immunotherapy.
no code implementations • 26 Mar 2022 • Bolesław L. Osinski, Aïcha BenTaieb, Irvin Ho, Ryan D. Jones, Rohan P. Joshi, Andrew Westley, Michael Carlson, Caleb Willis, Luke Schleicher, Brett M. Mahon, Martin C. Stumpe
Then, a pathologist-defined target yield divided by the predicted DNA yield/slide gives the number of slides to scrape.
no code implementations • 18 Mar 2022 • Rohan P. Joshi, Bolesław L. Osinski, Niha Beig, Lingdao Sha, Kshitij Ingale, Martin C. Stumpe
The association of individual cell features with MET alterations suggested a predictive model could distinguish MET wild-type from MET amplification or MET exon 14 deletion.
no code implementations • 1 Jul 2021 • Nathaniel Braman, Jacob W. H. Gordon, Emery T. Goossens, Caleb Willis, Martin C. Stumpe, Jagadish Venkataraman
Here, we predict the overall survival (OS) of glioma patients from diverse multimodal data with a Deep Orthogonal Fusion (DOF) model.
no code implementations • 25 Nov 2020 • Ellery Wulczyn, Kunal Nagpal, Matthew Symonds, Melissa Moran, Markus Plass, Robert Reihs, Farah Nader, Fraser Tan, Yuannan Cai, Trissia Brown, Isabelle Flament-Auvigne, Mahul B. Amin, Martin C. Stumpe, Heimo Muller, Peter Regitnig, Andreas Holzinger, Greg S. Corrado, Lily H. Peng, Po-Hsuan Cameron Chen, David F. Steiner, Kurt Zatloukal, Yun Liu, Craig H. Mermel
's C-indices were 0. 87 and 0. 85 for continuous and discrete grading, respectively, compared to 0. 79 (95%CI 0. 71-0. 86) for GG obtained from the reports.
no code implementations • 17 Nov 2020 • Ellery Wulczyn, David F. Steiner, Melissa Moran, Markus Plass, Robert Reihs, Fraser Tan, Isabelle Flament-Auvigne, Trissia Brown, Peter Regitnig, Po-Hsuan Cameron Chen, Narayan Hegde, Apaar Sadhwani, Robert MacDonald, Benny Ayalew, Greg S. Corrado, Lily H. Peng, Daniel Tse, Heimo Müller, Zhaoyang Xu, Yun Liu, Martin C. Stumpe, Kurt Zatloukal, Craig H. Mermel
Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic features that can be reliably identified by people for future validation studies.
no code implementations • 16 Dec 2019 • Ellery Wulczyn, David F. Steiner, Zhaoyang Xu, Apaar Sadhwani, Hongwu Wang, Isabelle Flament, Craig H. Mermel, Po-Hsuan Cameron Chen, Yun Liu, Martin C. Stumpe
Our analysis demonstrates the potential for this approach to provide prognostic information in multiple cancer types, and even within specific pathologic stages.
no code implementations • 30 Jan 2019 • Narayan Hegde, Jason D. Hipp, Yun Liu, Michael E. Buck, Emily Reif, Daniel Smilkov, Michael Terry, Carrie J. Cai, Mahul B. Amin, Craig H. Mermel, Phil Q. Nelson, Lily H. Peng, Greg S. Corrado, Martin C. Stumpe
SMILY may be a useful general-purpose tool in the pathologist's arsenal, to improve the efficiency of searching large archives of histopathology images, without the need to develop and implement specific tools for each application.
no code implementations • 15 Jan 2019 • Timo Kohlberger, Yun Liu, Melissa Moran, Po-Hsuan, Chen, Trissia Brown, Craig H. Mermel, Jason D. Hipp, Martin C. Stumpe
OOF is often only detected upon careful review, potentially causing rescanning and workflow delays.
no code implementations • 21 Nov 2018 • Po-Hsuan Cameron Chen, Krishna Gadepalli, Robert MacDonald, Yun Liu, Kunal Nagpal, Timo Kohlberger, Jeffrey Dean, Greg S. Corrado, Jason D. Hipp, Martin C. Stumpe
We demonstrate the utility of ARM in the detection of lymph node metastases in breast cancer and the identification of prostate cancer with a latency that supports real-time workflows.
no code implementations • 15 Nov 2018 • Kunal Nagpal, Davis Foote, Yun Liu, Po-Hsuan, Chen, Ellery Wulczyn, Fraser Tan, Niels Olson, Jenny L. Smith, Arash Mohtashamian, James H. Wren, Greg S. Corrado, Robert MacDonald, Lily H. Peng, Mahul B. Amin, Andrew J. Evans, Ankur R. Sangoi, Craig H. Mermel, Jason D. Hipp, Martin C. Stumpe
For prostate cancer patients, the Gleason score is one of the most important prognostic factors, potentially determining treatment independent of the stage.
6 code implementations • 3 Mar 2017 • Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E. Dahl, Timo Kohlberger, Aleksey Boyko, Subhashini Venugopalan, Aleksei Timofeev, Philip Q. Nelson, Greg S. Corrado, Jason D. Hipp, Lily Peng, Martin C. Stumpe
At 8 false positives per image, we detect 92. 4% of the tumors, relative to 82. 7% by the previous best automated approach.
Ranked #2 on Medical Object Detection on Barrett’s Esophagus
no code implementations • 17 Dec 2015 • Qian Yu, Christian Szegedy, Martin C. Stumpe, Liron Yatziv, Vinay Shet, Julian Ibarz, Sacha Arnoud
Precise business store front detection enables accurate geo-location of businesses, and further provides input for business categorization, listing generation, etc.
no code implementations • CVPR 2015 • Yair Movshovitz-Attias, Qian Yu, Martin C. Stumpe, Vinay Shet, Sacha Arnoud, Liron Yatziv
Modern search engines receive large numbers of business related, local aware queries.
no code implementations • 7 Mar 2012 • Martin C. Stumpe, Jeffrey C. Smith, Jeffrey E. Van Cleve, Joseph D. Twicken, Thomas S. Barclay, Michael N. Fanelli, Forrest R. Girouard, Jon M. Jenkins, Jeffery J. Kolodziejczak, Sean D. McCauliff, Robert L. Morris
This new PDC version, which utilizes a Bayesian approach for removal of systematics, reliably corrects errors in the light curves while at the same time preserving planet transits and other astrophysically interesting signals.
Instrumentation and Methods for Astrophysics Applications
no code implementations • 7 Mar 2012 • Jeffrey C. Smith, Martin C. Stumpe, Jeffrey E. Van Cleve, Jon M. Jenkins, Thomas S. Barclay, Michael N. Fanelli, Forrest R. Girouard, Jeffery J. Kolodziejczak, Sean D. McCauliff, Robert L. Morris, Joseph D. Twicken
These errors, which include discontinuities, outliers, systematic trends and other instrumental signatures, obscure astrophysical signals.
Instrumentation and Methods for Astrophysics Applications