no code implementations • SMM4H (COLING) 2022 • Luis Gasco Sánchez, Darryl Estrada Zavala, Eulàlia Farré-Maduell, Salvador Lima-López, Antonio Miranda-Escalada, Martin Krallinger
We anticipate that the corpus and systems resulting from the SocialDisNER track might further foster health related text mining of social media content in Spanish and inspire disease detection strategies in other languages.
no code implementations • SMM4H (COLING) 2022 • Davy Weissenbacher, Juan Banda, Vera Davydova, Darryl Estrada Zavala, Luis Gasco Sánchez, Yao Ge, Yuting Guo, Ari Klein, Martin Krallinger, Mathias Leddin, Arjun Magge, Raul Rodriguez-Esteban, Abeed Sarker, Lucia Schmidt, Elena Tutubalina, Graciela Gonzalez-Hernandez
For the past seven years, the Social Media Mining for Health Applications (#SMM4H) shared tasks have promoted the community-driven development and evaluation of advanced natural language processing systems to detect, extract, and normalize health-related information in public, user-generated content.
no code implementations • NAACL (SMM4H) 2021 • Antonio Miranda-Escalada, Eulàlia Farré-Maduell, Salvador Lima-López, Luis Gascó, Vicent Briva-Iglesias, Marvin Agüero-Torales, Martin Krallinger
Detection of occupations in texts is relevant for a range of important application scenarios, like competitive intelligence, sociodemographic analysis, legal NLP or health-related occupational data mining.
no code implementations • NAACL (SMM4H) 2021 • Arjun Magge, Ari Klein, Antonio Miranda-Escalada, Mohammed Ali Al-Garadi, Ilseyar Alimova, Zulfat Miftahutdinov, Eulalia Farre, Salvador Lima López, Ivan Flores, Karen O’Connor, Davy Weissenbacher, Elena Tutubalina, Abeed Sarker, Juan Banda, Martin Krallinger, Graciela Gonzalez-Hernandez
The global growth of social media usage over the past decade has opened research avenues for mining health related information that can ultimately be used to improve public health.
no code implementations • 9 Apr 2024 • Fernando Gallego, Guillermo López-García, Luis Gasco-Sánchez, Martin Krallinger, Francisco J. Veredas
This study presents ClinLinker, a novel approach employing a two-phase pipeline for medical entity linking that leverages the potential of in-domain adapted language models for biomedical text mining: initial candidate retrieval using a SapBERT-based bi-encoder and subsequent re-ranking with a cross-encoder, trained by following a contrastive-learning strategy to be tailored to medical concepts in Spanish.
no code implementations • 11 Jul 2023 • Anastasios Nentidis, Georgios Katsimpras, Anastasia Krithara, Salvador Lima López, Eulália Farré-Maduell, Luis Gasco, Martin Krallinger, Georgios Paliouras
This is an overview of the eleventh edition of the BioASQ challenge in the context of the Conference and Labs of the Evaluation Forum (CLEF) 2023.
no code implementations • 13 Oct 2022 • Anastasios Nentidis, Georgios Katsimpras, Eirini Vandorou, Anastasia Krithara, Antonio Miranda-Escalada, Luis Gasco, Martin Krallinger, Georgios Paliouras
This paper presents an overview of the tenth edition of the BioASQ challenge in the context of the Conference and Labs of the Evaluation Forum (CLEF) 2022.
no code implementations • 16 Sep 2021 • Casimiro Pio Carrino, Jordi Armengol-Estapé, Ona de Gibert Bonet, Asier Gutiérrez-Fandiño, Aitor Gonzalez-Agirre, Martin Krallinger, Marta Villegas
We introduce CoWeSe (the Corpus Web Salud Espa\~nol), the largest Spanish biomedical corpus to date, consisting of 4. 5GB (about 750M tokens) of clean plain text.
no code implementations • 28 Jun 2021 • Anastasios Nentidis, Georgios Katsimpras, Eirini Vandorou, Anastasia Krithara, Luis Gasco, Martin Krallinger, Georgios Paliouras
Advancing the state-of-the-art in large-scale biomedical semantic indexing and question answering is the main focus of the BioASQ challenge.
no code implementations • 28 Jun 2021 • Anastasios Nentidis, Anastasia Krithara, Konstantinos Bougiatiotis, Martin Krallinger, Carlos Rodriguez-Penagos, Marta Villegas, Georgios Paliouras
In this paper, we present an overview of the eighth edition of the BioASQ challenge, which ran as a lab in the Conference and Labs of the Evaluation Forum (CLEF) 2020.
no code implementations • WS 2019 • Aitor Gonzalez-Agirre, Montserrat Marimon, Ander Intxaurrondo, Obdulia Rabal, Marta Villegas, Martin Krallinger
We foresee that the PharmaCoNER annotation guidelines, corpus and participant systems will foster the development of new resources for clinical and biomedical text mining systems of Spanish medical data.
no code implementations • WS 2019 • Felipe Soares, Martin Krallinger
This paper describes the machine translation systems developed by the Barcelona Supercomputing (BSC) team for the biomedical translation shared task of WMT19.
no code implementations • WS 2019 • Rachel Bawden, Kevin Bretonnel Cohen, Cristian Grozea, Antonio Jimeno Yepes, Madeleine Kittner, Martin Krallinger, Nancy Mah, Aurelie Neveol, Mariana Neves, Felipe Soares, Amy Siu, Karin Verspoor, Maika Vicente Navarro
In the fourth edition of the WMT Biomedical Translation task, we considered a total of six languages, namely Chinese (zh), English (en), French (fr), German (de), Portuguese (pt), and Spanish (es).
no code implementations • WS 2019 • Felipe Soares, Marta Villegas, Aitor Gonzalez-Agirre, Martin Krallinger, Jordi Armengol-Estap{\'e}
We performed intrinsic evaluation with our adapted datasets, as well as extrinsic evaluation with a named entity recognition systems using a baseline embedding of general-domain.
1 code implementation • 5 May 2019 • Felipe Soares, Martin Krallinger
The BVS database (Health Virtual Library) is a centralized source of biomedical information for Latin America and Carib, created in 1998 and coordinated by BIREME (Biblioteca Regional de Medicina) in agreement with the Pan American Health Organization (OPAS).