1 code implementation • 24 May 2024 • Benjamin Gallusser, Martin Weigert
Importantly, unlike existing transformer-based MOT pipelines, our learning architecture also accounts for dividing objects such as cells and allows for accurate tracking even with simple greedy linking, thus making strides towards removing the requirement for a complex linking step.
1 code implementation • 9 May 2023 • Benjamin Gallusser, Max Stieber, Martin Weigert
Here we present a self-supervised method based on time arrow prediction pre-training that learns dense image representations from raw, unlabeled live-cell microscopy videos.
1 code implementation • 11 Mar 2023 • Simon Graham, Quoc Dang Vu, Mostafa Jahanifar, Martin Weigert, Uwe Schmidt, Wenhua Zhang, Jun Zhang, Sen yang, Jinxi Xiang, Xiyue Wang, Josef Lorenz Rumberger, Elias Baumann, Peter Hirsch, Lihao Liu, Chenyang Hong, Angelica I. Aviles-Rivero, Ayushi Jain, Heeyoung Ahn, Yiyu Hong, Hussam Azzuni, Min Xu, Mohammad Yaqub, Marie-Claire Blache, Benoît Piégu, Bertrand Vernay, Tim Scherr, Moritz Böhland, Katharina Löffler, Jiachen Li, Weiqin Ying, Chixin Wang, Dagmar Kainmueller, Carola-Bibiane Schönlieb, Shuolin Liu, Dhairya Talsania, Yughender Meda, Prakash Mishra, Muhammad Ridzuan, Oliver Neumann, Marcel P. Schilling, Markus Reischl, Ralf Mikut, Banban Huang, Hsiang-Chin Chien, Ching-Ping Wang, Chia-Yen Lee, Hong-Kun Lin, Zaiyi Liu, Xipeng Pan, Chu Han, Jijun Cheng, Muhammad Dawood, Srijay Deshpande, Raja Muhammad Saad Bashir, Adam Shephard, Pedro Costa, João D. Nunes, Aurélio Campilho, Jaime S. Cardoso, Hrishikesh P S, Densen Puthussery, Devika R G, Jiji C V, Ye Zhang, Zijie Fang, Zhifan Lin, Yongbing Zhang, Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Vi Thi-Tuong Vo, Soo-Hyung Kim, Taebum Lee, Satoshi Kondo, Satoshi Kasai, Pranay Dumbhare, Vedant Phuse, Yash Dubey, Ankush Jamthikar, Trinh Thi Le Vuong, Jin Tae Kwak, Dorsa Ziaei, Hyun Jung, Tianyi Miao, David Snead, Shan E Ahmed Raza, Fayyaz Minhas, Nasir M. Rajpoot
Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome.
1 code implementation • 7 Mar 2023 • Andreas Müller, Deborah Schmidt, Lucas Rieckert, Michele Solimena, Martin Weigert
In this protocol, we describe a practical and annotation-efficient pipeline for organelle-specific segmentation, spatial analysis, and visualization of large volume electron microscopy datasets using freely available, user-friendly software tools that can be run on a single standard workstation.
3 code implementations • 3 Mar 2022 • Martin Weigert, Uwe Schmidt
Instance segmentation and classification of nuclei is an important task in computational pathology.
1 code implementation • 2 Jun 2020 • Debayan Saha, Uwe Schmidt, Qinrong Zhang, Aurelien Barbotin, Qi Hu, Na Ji, Martin J. Booth, Martin Weigert, Eugene W. Myers
Additionally, we study the predictability of individual aberrations with respect to their data requirements and find that the symmetry of the wavefront plays a crucial role.
1 code implementation • MIDL 2019 • Sarah Schmell, Falk Zakrzewski, Walter de Back, Martin Weigert, Uwe Schmidt, Torsten Wenke, Silke Zeugner, Robert Mantey, Christian Sperling, Ingo Roeder, Pia Hoenscheid, Daniela Aust, Gustavo Baretton
It mimics the pathological assessment and relies on the detection and localization of interphase nuclei based on instance segmentation networks.
2 code implementations • 9 Aug 2019 • Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, Gene Myers
Accurate detection and segmentation of cell nuclei in volumetric (3D) fluorescence microscopy datasets is an important step in many biomedical research projects.
3 code implementations • 9 Jun 2018 • Uwe Schmidt, Martin Weigert, Coleman Broaddus, Gene Myers
Automatic detection and segmentation of cells and nuclei in microscopy images is important for many biological applications.
no code implementations • 5 Apr 2017 • Martin Weigert, Loic Royer, Florian Jug, Gene Myers
We achieve this using a convolutional neural network that is trained end-to-end from the same anisotropic body of data we later apply the network to.