1 code implementation • 18 Oct 2021 • Marvin Zhang, Sergey Levine, Chelsea Finn
We study the problem of test time robustification, i. e., using the test input to improve model robustness.
5 code implementations • 14 Dec 2020 • Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, Percy Liang
Distribution shifts -- where the training distribution differs from the test distribution -- can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild.
3 code implementations • NeurIPS 2021 • Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, Chelsea Finn
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
no code implementations • 10 Dec 2019 • Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, Sergey Levine
In this paper, we study how these challenges can be alleviated with an automated robotic learning framework, in which multi-stage tasks are defined simply by providing videos of a human demonstrator and then learned autonomously by the robot from raw image observations.
10 code implementations • NeurIPS 2019 • Michael Janner, Justin Fu, Marvin Zhang, Sergey Levine
Designing effective model-based reinforcement learning algorithms is difficult because the ease of data generation must be weighed against the bias of model-generated data.
1 code implementation • ICLR 2019 • Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, Sergey Levine
Model-based reinforcement learning (RL) has proven to be a data efficient approach for learning control tasks but is difficult to utilize in domains with complex observations such as images.
no code implementations • 28 Sep 2016 • Marvin Zhang, Xinyang Geng, Jonathan Bruce, Ken Caluwaerts, Massimo Vespignani, Vytas SunSpiral, Pieter Abbeel, Sergey Levine
We evaluate our method with real-world and simulated experiments on the SUPERball tensegrity robot, showing that the learned policies generalize to changes in system parameters, unreliable sensor measurements, and variation in environmental conditions, including varied terrains and a range of different gravities.
no code implementations • 5 Jul 2015 • Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, Pieter Abbeel
We evaluate our method on tasks involving continuous control in manipulation and navigation settings, and show that our method can learn complex policies that successfully complete a range of tasks that require memory.