no code implementations • 4 Oct 2023 • Jannis Bulian, Mike S. Schäfer, Afra Amini, Heidi Lam, Massimiliano Ciaramita, Ben Gaiarin, Michelle Chen Hübscher, Christian Buck, Niels G. Mede, Markus Leippold, Nadine Strauß
As Large Language Models (LLMs) rise in popularity, it is necessary to assess their capability in critically relevant domains.
no code implementations • 23 May 2023 • Afra Amini, Massimiliano Ciaramita
However, the effectiveness of in-context learning is dependent on the provided context, and the performance on a downstream task can vary considerably, depending on the instruction.
1 code implementation • 15 Dec 2022 • Bernd Bohnet, Vinh Q. Tran, Pat Verga, Roee Aharoni, Daniel Andor, Livio Baldini Soares, Massimiliano Ciaramita, Jacob Eisenstein, Kuzman Ganchev, Jonathan Herzig, Kai Hui, Tom Kwiatkowski, Ji Ma, Jianmo Ni, Lierni Sestorain Saralegui, Tal Schuster, William W. Cohen, Michael Collins, Dipanjan Das, Donald Metzler, Slav Petrov, Kellie Webster
We take human annotations as a gold standard and show that a correlated automatic metric is suitable for development.
1 code implementation • 21 Oct 2022 • Leonard Adolphs, Michelle Chen Huebscher, Christian Buck, Sertan Girgin, Olivier Bachem, Massimiliano Ciaramita, Thomas Hofmann
Neural retrieval models have superseded classic bag-of-words methods such as BM25 as the retrieval framework of choice.
no code implementations • 30 Sep 2022 • Michelle Chen Huebscher, Christian Buck, Massimiliano Ciaramita, Sascha Rothe
We extend the previous learning to search setup to a hybrid environment, which accepts discrete query refinement operations, after a first-pass retrieval step via a dual encoder.
no code implementations • 1 Sep 2021 • Leonard Adolphs, Benjamin Boerschinger, Christian Buck, Michelle Chen Huebscher, Massimiliano Ciaramita, Lasse Espeholt, Thomas Hofmann, Yannic Kilcher, Sascha Rothe, Pier Giuseppe Sessa, Lierni Sestorain Saralegui
This paper presents first successful steps in designing search agents that learn meta-strategies for iterative query refinement in information-seeking tasks.
no code implementations • 1 Dec 2020 • Francesco S. Varini, Jordan Boyd-Graber, Massimiliano Ciaramita, Markus Leippold
Climate change communication in the mass media and other textual sources may affect and shape public perception.
no code implementations • 1 Dec 2020 • Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bulian, Massimiliano Ciaramita, Markus Leippold
We introduce CLIMATE-FEVER, a new publicly available dataset for verification of climate change-related claims.
no code implementations • 11 Nov 2019 • Benjamin Borschinger, Jordan Boyd-Graber, Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Michelle Chen Huebscher, Wojciech Gajewski, Yannic Kilcher, Rodrigo Nogueira, Lierni Sestorain Saralegu
We investigate a framework for machine reading, inspired by real world information-seeking problems, where a meta question answering system interacts with a black box environment.
no code implementations • ICLR 2020 • Gino Brunner, Yang Liu, Damián Pascual, Oliver Richter, Massimiliano Ciaramita, Roger Wattenhofer
We show that, for sequences longer than the attention head dimension, attention weights are not identifiable.
no code implementations • ICLR Workshop drlStructPred 2019 • Rodrigo Nogueira, Jannis Bulian, Massimiliano Ciaramita
We investigate methods to efficiently learn diverse strategies in reinforcement learning for a generative structured prediction problem: query reformulation.
no code implementations • ICLR 2019 • Rodrigo Nogueira, Jannis Bulian, Massimiliano Ciaramita
We propose a method to efficiently learn diverse strategies in reinforcement learning for query reformulation in the tasks of document retrieval and question answering.
1 code implementation • 25 May 2018 • Lierni Sestorain, Massimiliano Ciaramita, Christian Buck, Thomas Hofmann
Our method can obtain improvements also on the setting where a small amount of parallel data for the zero-shot language pair is available.
no code implementations • 23 Jan 2018 • Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, Wei Wang
We analyze the language learned by an agent trained with reinforcement learning as a component of the ActiveQA system [Buck et al., 2017].
2 code implementations • ICLR 2018 • Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, Wei Wang
The agent probes the system with, potentially many, natural language reformulations of an initial question and aggregates the returned evidence to yield the best answer.
no code implementations • 2 Sep 2013 • Neil Houlsby, Massimiliano Ciaramita
We present an LDA approach to entity disambiguation.