1 code implementation • 8 May 2025 • Hendrik Möller, Hanna Schön, Alina Dima, Benjamin Keinert-Weth, Robert Graf, Matan Atad, Johannes Paetzold, Friederike Jungmann, Rickmer Braren, Florian Kofler, Bjoern Menze, Daniel Rueckert, Jan S. Kirschke
Thoracolumbar stump ribs are one of the essential indicators of thoracolumbar transitional vertebrae or enumeration anomalies.
2 code implementations • 20 Feb 2025 • Robert Graf, Hendrik Möller, Sophie Starck, Matan Atad, Philipp Braun, Jonathan Stelter, Annette Peters, Lilian Krist, Stefan N. Willich, Henry Völzke, Robin Bülow, Klaus Berger, Tobias Pischon, Thoralf Niendorf, Johannes Paetzold, Dimitrios Karampinos, Daniel Rueckert, Jan Kirschke
While the two-point VIBE provides water-fat-separated images, the six-point VIBE allows estimation of the effective transversal relaxation rate R2* and the proton density fat fraction (PDFF), which are imaging markers for health and disease.
no code implementations • 24 Jan 2025 • Hendrik Möller, Lukas Krautschick, Matan Atad, Robert Graf, Chia-Jung Busch, Achim Beule, Christian Scharf, Lars Kaderali, Bjoern Menze, Daniel Rueckert, Jan Kirschke, Fabian Schwitzing
While the soft tissue segmentation is good, the automated annotations of the air volumes are excellent.
no code implementations • 14 Oct 2024 • Robert Graf, Florian Hunecke, Soeren Pohl, Matan Atad, Hendrik Moeller, Sophie Starck, Thomas Kroencke, Stefanie Bette, Fabian Bamberg, Tobias Pischon, Thoralf Niendorf, Carsten Schmidt, Johannes C. Paetzold, Daniel Rueckert, Jan S Kirschke
Our findings highlight the potential of using advanced embedding techniques like DAEs to detect data quality issues and biases in medical imaging datasets.
1 code implementation • 12 Aug 2024 • Matan Atad, Gabriel Gruber, Marx Ribeiro, Luis Fernando Nicolini, Robert Graf, Hendrik Möller, Kati Nispel, Ivan Ezhov, Daniel Rueckert, Jan S. Kirschke
The proposed method is evaluated against SOTA Genetic Algorithm and inverse model baselines on synthetic and in vitro experimental datasets.
1 code implementation • 2 Aug 2024 • Matan Atad, David Schinz, Hendrik Moeller, Robert Graf, Benedikt Wiestler, Daniel Rueckert, Nassir Navab, Jan S. Kirschke, Matthias Keicher
Counterfactual explanations (CEs) aim to enhance the interpretability of machine learning models by illustrating how alterations in input features would affect the resulting predictions.
1 code implementation • 31 May 2024 • Robert Graf, Paul-Sören Platzek, Evamaria Olga Riedel, Constanze Ramschütz, Sophie Starck, Hendrik Kristian Möller, Matan Atad, Henry Völzke, Robin Bülow, Carsten Oliver Schmidt, Julia Rüdebusch, Matthias Jung, Marco Reisert, Jakob Weiss, Maximilian Löffler, Fabian Bamberg, Bene Wiestler, Johannes C. Paetzold, Daniel Rueckert, Jan Stefan Kirschke
Objectives: To present a publicly available torso segmentation network for large epidemiology datasets on volumetric interpolated breath-hold examination (VIBE) images.
1 code implementation • 26 Feb 2024 • Hendrik Möller, Robert Graf, Joachim Schmitt, Benjamin Keinert, Matan Atad, Anjany Sekuboyina, Felix Streckenbach, Hanna Schön, Florian Kofler, Thomas Kroencke, Stefanie Bette, Stefan Willich, Thomas Keil, Thoralf Niendorf, Tobias Pischon, Beate Endemann, Bjoern Menze, Daniel Rueckert, Jan S. Kirschke
Training on auto-generated annotations and evaluating on manually corrected test data from the GNC yielded global dice scores of 0. 900 for vertebrae, 0. 960 for intervertebral discs, and 0. 947 for the spinal canal.
2 code implementations • 3 Jul 2023 • Jianxiang Feng, Matan Atad, Ismael Rodríguez, Maximilian Durner, Stephan Günnemann, Rudolph Triebel
Machine Learning (ML) models in Robotic Assembly Sequence Planning (RASP) need to be introspective on the predicted solutions, i. e. whether they are feasible or not, to circumvent potential efficiency degradation.
no code implementations • 21 Mar 2023 • Matthias Keicher, Matan Atad, David Schinz, Alexandra S. Gersing, Sarah C. Foreman, Sophia S. Goller, Juergen Weissinger, Jon Rischewski, Anna-Sophia Dietrich, Benedikt Wiestler, Jan S. Kirschke, Nassir Navab
We then regress the severity of the fracture as a function of the distance to this hyperplane, calibrating the results to the Genant scale.
2 code implementations • 17 Mar 2023 • Matan Atad, Jianxiang Feng, Ismael Rodríguez, Maximilian Durner, Rudolph Triebel
With GRACE, we are able to extract meaningful information from the graph input and predict assembly sequences in a step-by-step manner.
1 code implementation • 15 Jul 2022 • Matan Atad, Vitalii Dmytrenko, Yitong Li, Xinyue Zhang, Matthias Keicher, Jan Kirschke, Bene Wiestler, Ashkan Khakzar, Nassir Navab
Deep learning models used in medical image analysis are prone to raising reliability concerns due to their black-box nature.