1 code implementation • 24 Nov 2021 • Mateo Espinosa Zarlenga, Zohreh Shams, Mateja Jamnik
In recent years, there has been significant work on increasing both interpretability and debuggability of a Deep Neural Network (DNN) by extracting a rule-based model that approximates its decision boundary.
no code implementations • 29 Sep 2021 • Mateo Espinosa Zarlenga, Pietro Barbiero, Zohreh Shams, Dmitry Kazhdan, Umang Bhatt, Mateja Jamnik
Recent work on Explainable AI has focused on concept-based explanations, where deep learning models are explained in terms of high-level units of information, referred to as concepts.