no code implementations • 20 Mar 2025 • Guillermo Bernárdez, Miquel Ferriol-Galmés, Carlos Güemes-Palau, Mathilde Papillon, Pere Barlet-Ros, Albert Cabellos-Aparicio, Nina Miolane
Computer networks are the foundation of modern digital infrastructure, facilitating global communication and data exchange.
2 code implementations • 9 Oct 2024 • Mathilde Papillon, Guillermo Bernárdez, Claudio Battiloro, Nina Miolane
Combinatorial Complex Neural Networks (CCNNs), fairly general TDL models, have been shown to be more expressive and better performing than GNNs.
no code implementations • 8 Sep 2024 • Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree Vadgama, Erik Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K Ahmed, Pengfei Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea Cavallo, Yun Young Choi, George Dasoulas, Matouš Elphick, Giordan Escalona, Dominik Filipiak, Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski, Veljko Kovač, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro Martinez, Marissa Masden, Sebastian Mežnar, Bertran Miquel-Oliver, Alexis Molina, Alexander Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max Schattauer, Pavel Snopov, Julian Suk, Valentina Sánchez, Mauricio Tec, Francesco Vaccarino, Jonas Verhellen, Frederic Wantiez, Alexander Weers, Patrik Zajec, Blaž Škrlj, Nina Miolane
This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM).
1 code implementation • 12 Jul 2024 • Sophia Sanborn, Johan Mathe, Mathilde Papillon, Domas Buracas, Hansen J Lillemark, Christian Shewmake, Abby Bertics, Xavier Pennec, Nina Miolane
Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures.
3 code implementations • 9 Jun 2024 • Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Mustafa Hajij, Martin Carrasco, Pavlo Vasylenko, Mathilde Papillon, Ghada Zamzmi, Michael T. Schaub, Jonas Verhellen, Pavel Snopov, Bertran Miquel-Oliver, Manel Gil-Sorribes, Alexis Molina, Victor Guallar, Theodore Long, Julian Suk, Patryk Rygiel, Alexander Nikitin, Giordan Escalona, Michael Banf, Dominik Filipiak, Max Schattauer, Liliya Imasheva, Alvaro Martinez, Halley Fritze, Marissa Masden, Valentina Sánchez, Manuel Lecha, Andrea Cavallo, Claudio Battiloro, Matt Piekenbrock, Mauricio Tec, George Dasoulas, Nina Miolane, Simone Scardapane, Theodore Papamarkou
This work introduces TopoBench, an open-source library designed to standardize benchmarking and accelerate research in topological deep learning (TDL).
no code implementations • 23 May 2024 • Rubén Ballester, Pablo Hernández-García, Mathilde Papillon, Claudio Battiloro, Nina Miolane, Tolga Birdal, Carles Casacuberta, Sergio Escalera, Mustafa Hajij
Topological Deep Learning seeks to enhance the predictive performance of neural network models by harnessing topological structures in input data.
1 code implementation • 4 Feb 2024 • Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén Ballester, Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, Peter Chin, Sergio Escalera, Simone Fiorellino, Odin Hoff Gardaa, Gurusankar Gopalakrishnan, Devendra Govil, Josef Hoppe, Maneel Reddy Karri, Jude Khouja, Manuel Lecha, Neal Livesay, Jan Meißner, Soham Mukherjee, Alexander Nikitin, Theodore Papamarkou, Jaro Prílepok, Karthikeyan Natesan Ramamurthy, Paul Rosen, Aldo Guzmán-Sáenz, Alessandro Salatiello, Shreyas N. Samaga, Simone Scardapane, Michael T. Schaub, Luca Scofano, Indro Spinelli, Lev Telyatnikov, Quang Truong, Robin Walters, Maosheng Yang, Olga Zaghen, Ghada Zamzmi, Ali Zia, Nina Miolane
We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes.
1 code implementation • 26 Sep 2023 • Mathilde Papillon, Mustafa Hajij, Helen Jenne, Johan Mathe, Audun Myers, Theodore Papamarkou, Tolga Birdal, Tamal Dey, Tim Doster, Tegan Emerson, Gurusankar Gopalakrishnan, Devendra Govil, Aldo Guzmán-Sáenz, Henry Kvinge, Neal Livesay, Soham Mukherjee, Shreyas N. Samaga, Karthikeyan Natesan Ramamurthy, Maneel Reddy Karri, Paul Rosen, Sophia Sanborn, Robin Walters, Jens Agerberg, Sadrodin Barikbin, Claudio Battiloro, Gleb Bazhenov, Guillermo Bernardez, Aiden Brent, Sergio Escalera, Simone Fiorellino, Dmitrii Gavrilev, Mohammed Hassanin, Paul Häusner, Odin Hoff Gardaa, Abdelwahed Khamis, Manuel Lecha, German Magai, Tatiana Malygina, Rubén Ballester, Kalyan Nadimpalli, Alexander Nikitin, Abraham Rabinowitz, Alessandro Salatiello, Simone Scardapane, Luca Scofano, Suraj Singh, Jens Sjölund, Pavel Snopov, Indro Spinelli, Lev Telyatnikov, Lucia Testa, Maosheng Yang, Yixiao Yue, Olga Zaghen, Ali Zia, Nina Miolane
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning.
4 code implementations • 20 Apr 2023 • Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, Nina Miolane
The natural world is full of complex systems characterized by intricate relations between their components: from social interactions between individuals in a social network to electrostatic interactions between atoms in a protein.
no code implementations • 20 Sep 2022 • Mathilde Papillon, Mariel Pettee, Nina Miolane
We summarize the model and results of PirouNet, a semi-supervised recurrent variational autoencoder.
1 code implementation • 21 Jul 2022 • Mathilde Papillon, Mariel Pettee, Nina Miolane
Using Artificial Intelligence (AI) to create dance choreography with intention is still at an early stage.