no code implementations • 21 Mar 2024 • Connor Lee, Saraswati Soedarmadji, Matthew Anderson, Anthony J. Clark, Soon-Jo Chung
We present a new method to automatically generate semantic segmentation annotations for thermal imagery captured from an aerial vehicle by utilizing satellite-derived data products alongside onboard global positioning and attitude estimates.
1 code implementation • 13 Mar 2024 • Connor Lee, Matthew Anderson, Nikhil Raganathan, Xingxing Zuo, Kevin Do, Georgia Gkioxari, Soon-Jo Chung
We present the first publicly-available RGB-thermal dataset designed for aerial robotics operating in natural environments.
1 code implementation • 18 Jul 2023 • Connor Lee, Jonathan Gustafsson Frennert, Lu Gan, Matthew Anderson, Soon-Jo Chung
We present a new method to adapt an RGB-trained water segmentation network to target-domain aerial thermal imagery using online self-supervision by leveraging texture and motion cues as supervisory signals.
1 code implementation • 12 Jul 2023 • Matthew Anderson, Vu Le
We advance the Cohn-Umans framework for developing fast matrix multiplication algorithms.
1 code implementation • 30 Dec 2022 • Matthew Anderson, Zongliang Ji, Anthony Yang Xu
In subsequent work with Kleinberg and Szegedy, they connected this to the search for combinatorial objects called strong uniquely solvable puzzles (strong USPs).
1 code implementation • IEEE Globecom 2022 • Cooper Coldwell, Denver Conger, Edward Goodell, Brendan Jacobson, Bryton Petersen, Damon Spencer, Matthew Anderson, Matthew Sgambati
Machine learning-assisted network security may significantly contribute to securing 5G components.
Ranked #1 on Low-latency processing on 5GAD-2022
no code implementations • 21 Mar 2021 • Ali Agha, Kyohei Otsu, Benjamin Morrell, David D. Fan, Rohan Thakker, Angel Santamaria-Navarro, Sung-Kyun Kim, Amanda Bouman, Xianmei Lei, Jeffrey Edlund, Muhammad Fadhil Ginting, Kamak Ebadi, Matthew Anderson, Torkom Pailevanian, Edward Terry, Michael Wolf, Andrea Tagliabue, Tiago Stegun Vaquero, Matteo Palieri, Scott Tepsuporn, Yun Chang, Arash Kalantari, Fernando Chavez, Brett Lopez, Nobuhiro Funabiki, Gregory Miles, Thomas Touma, Alessandro Buscicchio, Jesus Tordesillas, Nikhilesh Alatur, Jeremy Nash, William Walsh, Sunggoo Jung, Hanseob Lee, Christoforos Kanellakis, John Mayo, Scott Harper, Marcel Kaufmann, Anushri Dixit, Gustavo Correa, Carlyn Lee, Jay Gao, Gene Merewether, Jairo Maldonado-Contreras, Gautam Salhotra, Maira Saboia Da Silva, Benjamin Ramtoula, Yuki Kubo, Seyed Fakoorian, Alexander Hatteland, Taeyeon Kim, Tara Bartlett, Alex Stephens, Leon Kim, Chuck Bergh, Eric Heiden, Thomas Lew, Abhishek Cauligi, Tristan Heywood, Andrew Kramer, Henry A. Leopold, Chris Choi, Shreyansh Daftry, Olivier Toupet, Inhwan Wee, Abhishek Thakur, Micah Feras, Giovanni Beltrame, George Nikolakopoulos, David Shim, Luca Carlone, Joel Burdick
This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge.
no code implementations • 29 Mar 2013 • Matthew Anderson, Geng-Shen Fu, Ronald Phlypo, Tülay Adalı
Thus, we provide the additional conditions for when the arbitrary ordering of the sources within each dataset is common.