Search Results for author: Matthew Anderson

Found 8 papers, 5 papers with code

Semantics from Space: Satellite-Guided Thermal Semantic Segmentation Annotation for Aerial Field Robots

no code implementations21 Mar 2024 Connor Lee, Saraswati Soedarmadji, Matthew Anderson, Anthony J. Clark, Soon-Jo Chung

We present a new method to automatically generate semantic segmentation annotations for thermal imagery captured from an aerial vehicle by utilizing satellite-derived data products alongside onboard global positioning and attitude estimates.

Segmentation Semantic Segmentation +1

Caltech Aerial RGB-Thermal Dataset in the Wild

1 code implementation13 Mar 2024 Connor Lee, Matthew Anderson, Nikhil Raganathan, Xingxing Zuo, Kevin Do, Georgia Gkioxari, Soon-Jo Chung

We present the first publicly-available RGB-thermal dataset designed for aerial robotics operating in natural environments.

Segmentation Semantic Segmentation

Online Self-Supervised Thermal Water Segmentation for Aerial Vehicles

1 code implementation18 Jul 2023 Connor Lee, Jonathan Gustafsson Frennert, Lu Gan, Matthew Anderson, Soon-Jo Chung

We present a new method to adapt an RGB-trained water segmentation network to target-domain aerial thermal imagery using online self-supervision by leveraging texture and motion cues as supervisory signals.

Segmentation Visual Navigation

Efficiently-Verifiable Strong Uniquely Solvable Puzzles and Matrix Multiplication

1 code implementation12 Jul 2023 Matthew Anderson, Vu Le

We advance the Cohn-Umans framework for developing fast matrix multiplication algorithms.

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles

1 code implementation30 Dec 2022 Matthew Anderson, Zongliang Ji, Anthony Yang Xu

In subsequent work with Kleinberg and Szegedy, they connected this to the search for combinatorial objects called strong uniquely solvable puzzles (strong USPs).

NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge

no code implementations21 Mar 2021 Ali Agha, Kyohei Otsu, Benjamin Morrell, David D. Fan, Rohan Thakker, Angel Santamaria-Navarro, Sung-Kyun Kim, Amanda Bouman, Xianmei Lei, Jeffrey Edlund, Muhammad Fadhil Ginting, Kamak Ebadi, Matthew Anderson, Torkom Pailevanian, Edward Terry, Michael Wolf, Andrea Tagliabue, Tiago Stegun Vaquero, Matteo Palieri, Scott Tepsuporn, Yun Chang, Arash Kalantari, Fernando Chavez, Brett Lopez, Nobuhiro Funabiki, Gregory Miles, Thomas Touma, Alessandro Buscicchio, Jesus Tordesillas, Nikhilesh Alatur, Jeremy Nash, William Walsh, Sunggoo Jung, Hanseob Lee, Christoforos Kanellakis, John Mayo, Scott Harper, Marcel Kaufmann, Anushri Dixit, Gustavo Correa, Carlyn Lee, Jay Gao, Gene Merewether, Jairo Maldonado-Contreras, Gautam Salhotra, Maira Saboia Da Silva, Benjamin Ramtoula, Yuki Kubo, Seyed Fakoorian, Alexander Hatteland, Taeyeon Kim, Tara Bartlett, Alex Stephens, Leon Kim, Chuck Bergh, Eric Heiden, Thomas Lew, Abhishek Cauligi, Tristan Heywood, Andrew Kramer, Henry A. Leopold, Chris Choi, Shreyansh Daftry, Olivier Toupet, Inhwan Wee, Abhishek Thakur, Micah Feras, Giovanni Beltrame, George Nikolakopoulos, David Shim, Luca Carlone, Joel Burdick

This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge.

Decision Making Motion Planning

Independent Vector Analysis: Identification Conditions and Performance Bounds

no code implementations29 Mar 2013 Matthew Anderson, Geng-Shen Fu, Ronald Phlypo, Tülay Adalı

Thus, we provide the additional conditions for when the arbitrary ordering of the sources within each dataset is common.

Cannot find the paper you are looking for? You can Submit a new open access paper.