Search Results for author: Matthew C. H. Lee

Found 9 papers, 5 papers with code

Image-and-Spatial Transformer Networks for Structure-Guided Image Registration

1 code implementation22 Jul 2019 Matthew C. H. Lee, Ozan Oktay, Andreas Schuh, Michiel Schaap, Ben Glocker

The goal is to learn a complex function that maps the appearance of input image pairs to parameters of a spatial transformation in order to align corresponding anatomical structures.

Image Registration

DLTK: State of the Art Reference Implementations for Deep Learning on Medical Images

1 code implementation18 Nov 2017 Nick Pawlowski, Sofia Ira Ktena, Matthew C. H. Lee, Bernhard Kainz, Daniel Rueckert, Ben Glocker, Martin Rajchl

We present DLTK, a toolkit providing baseline implementations for efficient experimentation with deep learning methods on biomedical images.

Image Segmentation Semantic Segmentation

Implicit Weight Uncertainty in Neural Networks

2 code implementations3 Nov 2017 Nick Pawlowski, Andrew Brock, Matthew C. H. Lee, Martin Rajchl, Ben Glocker

Modern neural networks tend to be overconfident on unseen, noisy or incorrectly labelled data and do not produce meaningful uncertainty measures.

Normalising Flows

Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders

3 code implementations8 Nov 2016 Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan

We study a variant of the variational autoencoder model (VAE) with a Gaussian mixture as a prior distribution, with the goal of performing unsupervised clustering through deep generative models.

Clustering Human Pose Forecasting

Cannot find the paper you are looking for? You can Submit a new open access paper.