1 code implementation • 14 Aug 2024 • Yiyang Xu, Hao Xu, Matthew Sinclair, Esther Puyol-Antón, Steven A Niederer, Amedeo Chiribiri, Steven E Williams, Michelle C Williams, Alistair A Young
In this study, we explore the combination of Slice Shifting Algorithm (SSA), Spatial Transformer Network (STN), and Label Transformer Network (LTN) to: 1) correct respiratory motion between segmented slices, and 2) transform sparse segmentation data into dense segmentation.
no code implementations • 2 Jul 2023 • Jingjie Guo, Weitong Zhang, Matthew Sinclair, Daniel Rueckert, Chen Chen
In addition, different from most existing TTA methods which restrict the adaptation to batch normalization blocks in the segmentation network only, we further exploit the use of channel and spatial attention blocks for improved adaptability at test time.
no code implementations • 1 Jan 2023 • James Batten, Matthew Sinclair, Ben Glocker, Michiel Schaap
Extracting complex structures from grid-based data is a common key step in automated medical image analysis.
no code implementations • 17 May 2022 • Liu Li, Qiang Ma, Matthew Sinclair, Antonios Makropoulos, Joseph Hajnal, A. David Edwards, Bernhard Kainz, Daniel Rueckert, Amir Alansary
Fetal Magnetic Resonance Imaging (MRI) is used in prenatal diagnosis and to assess early brain development.
no code implementations • 6 Jul 2021 • Samuel Budd, Matthew Sinclair, Thomas Day, Athanasios Vlontzos, Jeremy Tan, Tianrui Liu, Jaqueline Matthew, Emily Skelton, John Simpson, Reza Razavi, Ben Glocker, Daniel Rueckert, Emma C. Robinson, Bernhard Kainz
Fetal ultrasound screening during pregnancy plays a vital role in the early detection of fetal malformations which have potential long-term health impacts.
no code implementations • 18 Dec 2020 • Matthew Sinclair, Andreas Schuh, Karl Hahn, Kersten Petersen, Ying Bai, James Batten, Michiel Schaap, Ben Glocker
We propose Atlas-ISTN, a framework that jointly learns segmentation and registration on 2D and 3D image data, and constructs a population-derived atlas in the process.
no code implementations • 31 Jan 2020 • Esther Puyol Anton, Bram Ruijsink, Christian F. Baumgartner, Matthew Sinclair, Ender Konukoglu, Reza Razavi, Andrew P. King
The PHiSeg network and QC were validated against manual analysis on a cohort of the UK Biobank containing healthy subjects and chronic cardiomyopathy patients.
no code implementations • 7 Aug 2019 • Samuel Budd, Matthew Sinclair, Bishesh Khanal, Jacqueline Matthew, David Lloyd, Alberto Gomez, Nicolas Toussaint, Emma Robinson, Bernhard Kainz
Manual estimation of fetal Head Circumference (HC) from Ultrasound (US) is a key biometric for monitoring the healthy development of fetuses.
no code implementations • 20 Nov 2018 • Qingjie Meng, Matthew Sinclair, Veronika Zimmer, Benjamin Hou, Martin Rajchl, Nicolas Toussaint, Ozan Oktay, Jo Schlemper, Alberto Gomez, James Housden, Jacqueline Matthew, Daniel Rueckert, Julia Schnabel, Bernhard Kainz
Our method is more consistent than human annotation, and outperforms the state-of-the-art quantitatively in shadow segmentation and qualitatively in confidence estimation of shadow regions.
no code implementations • 3 Oct 2018 • Giacomo Tarroni, Ozan Oktay, Matthew Sinclair, Wenjia Bai, Andreas Schuh, Hideaki Suzuki, Antonio de Marvao, Declan O'Regan, Stuart Cook, Daniel Rueckert
If long axis (LA) images are available, PSMs are generated for them and combined to create the target PSM; if not, the target PSM is produced from the same stack using a 3D model trained from motion-free stacks.
2 code implementations • 2 Aug 2018 • Nicolas Toussaint, Bishesh Khanal, Matthew Sinclair, Alberto Gomez, Emily Skelton, Jacqueline Matthew, Julia A. Schnabel
This paper addresses the task of detecting and localising fetal anatomical regions in 2D ultrasound images, where only image-level labels are present at training, i. e. without any localisation or segmentation information.
1 code implementation • 19 Jun 2018 • Yuanwei Li, Bishesh Khanal, Benjamin Hou, Amir Alansary, Juan J. Cerrolaza, Matthew Sinclair, Jacqueline Matthew, Chandni Gupta, Caroline Knight, Bernhard Kainz, Daniel Rueckert
We propose a new Iterative Transformation Network (ITN) for the automatic detection of standard planes in 3D volumes.
1 code implementation • 18 Jun 2018 • Yuanwei Li, Amir Alansary, Juan J. Cerrolaza, Bishesh Khanal, Matthew Sinclair, Jacqueline Matthew, Chandni Gupta, Caroline Knight, Bernhard Kainz, Daniel Rueckert
PIN is computationally efficient since the inference stage only selectively samples a small number of patches in an iterative fashion rather than a dense sampling at every location in the volume.
no code implementations • 24 Apr 2018 • Matthew Sinclair, Christian F. Baumgartner, Jacqueline Matthew, Wenjia Bai, Juan Cerrolaza Martinez, Yuanwei Li, Sandra Smith, Caroline L. Knight, Bernhard Kainz, Jo Hajnal, Andrew P. King, Daniel Rueckert
Measurement of head biometrics from fetal ultrasonography images is of key importance in monitoring the healthy development of fetuses.
no code implementations • 4 Nov 2017 • Konstantinos Kamnitsas, Wenjia Bai, Enzo Ferrante, Steven McDonagh, Matthew Sinclair, Nick Pawlowski, Martin Rajchl, Matthew Lee, Bernhard Kainz, Daniel Rueckert, Ben Glocker
Deep learning approaches such as convolutional neural nets have consistently outperformed previous methods on challenging tasks such as dense, semantic segmentation.
1 code implementation • 25 Oct 2017 • Wenjia Bai, Matthew Sinclair, Giacomo Tarroni, Ozan Oktay, Martin Rajchl, Ghislain Vaillant, Aaron M. Lee, Nay Aung, Elena Lukaschuk, Mihir M. Sanghvi, Filip Zemrak, Kenneth Fung, Jose Miguel Paiva, Valentina Carapella, Young Jin Kim, Hideaki Suzuki, Bernhard Kainz, Paul M. Matthews, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Ben Glocker, Daniel Rueckert
By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance on par with human experts in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images.