Search Results for author: Matthew Trahms

Found 4 papers, 3 papers with code

QONNX: Representing Arbitrary-Precision Quantized Neural Networks

1 code implementation15 Jun 2022 Alessandro Pappalardo, Yaman Umuroglu, Michaela Blott, Jovan Mitrevski, Ben Hawks, Nhan Tran, Vladimir Loncar, Sioni Summers, Hendrik Borras, Jules Muhizi, Matthew Trahms, Shih-Chieh Hsu, Scott Hauck, Javier Duarte

We present extensions to the Open Neural Network Exchange (ONNX) intermediate representation format to represent arbitrary-precision quantized neural networks.


Graph Neural Networks for Charged Particle Tracking on FPGAs

no code implementations3 Dec 2021 Abdelrahman Elabd, Vesal Razavimaleki, Shi-Yu Huang, Javier Duarte, Markus Atkinson, Gage DeZoort, Peter Elmer, Scott Hauck, Jin-Xuan Hu, Shih-Chieh Hsu, Bo-Cheng Lai, Mark Neubauer, Isobel Ojalvo, Savannah Thais, Matthew Trahms

The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC).


FPGAs-as-a-Service Toolkit (FaaST)

2 code implementations16 Oct 2020 Dylan Sheldon Rankin, Jeffrey Krupa, Philip Harris, Maria Acosta Flechas, Burt Holzman, Thomas Klijnsma, Kevin Pedro, Nhan Tran, Scott Hauck, Shih-Chieh Hsu, Matthew Trahms, Kelvin Lin, Yu Lou, Ta-Wei Ho, Javier Duarte, Mia Liu

Computing needs for high energy physics are already intensive and are expected to increase drastically in the coming years.

Computational Physics Distributed, Parallel, and Cluster Computing High Energy Physics - Experiment Data Analysis, Statistics and Probability Instrumentation and Detectors

FPGA-accelerated machine learning inference as a service for particle physics computing

1 code implementation18 Apr 2019 Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan, Benjamin Kreis, Brian Lee, Mia Liu, Vladimir Lončar, Jennifer Ngadiuba, Kevin Pedro, Brandon Perez, Maurizio Pierini, Dylan Rankin, Nhan Tran, Matthew Trahms, Aristeidis Tsaris, Colin Versteeg, Ted W. Way, Dustin Werran, Zhenbin Wu

New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains.

Data Analysis, Statistics and Probability High Energy Physics - Experiment Computational Physics Instrumentation and Detectors

Cannot find the paper you are looking for? You can Submit a new open access paper.