1 code implementation • insights (ACL) 2022 • Philipp Koch, Matthias Aßenmacher, Christian Heumann
Evaluating generated text received new attention with the introduction of model-based metrics in recent years.
no code implementations • 6 Sep 2024 • Luis Mayer, Christian Heumann, Matthias Aßenmacher
To gain further insights, we measure the runtime as well as the memory usage of the generated outputs and compared them to the other code submissions on Leetcode.
no code implementations • 6 Sep 2024 • Andreas Stephan, Dawei Zhu, Matthias Aßenmacher, Xiaoyu Shen, Benjamin Roth
In contrast, we study LLM judges on mathematical reasoning tasks.
no code implementations • 26 Jul 2024 • Esteban Garces Arias, Julian Rodemann, Meimingwei Li, Christian Heumann, Matthias Aßenmacher
Decoding from the output distributions of large language models to produce high-quality text is a complex challenge in language modeling.
no code implementations • 2 Nov 2023 • Björn Deiseroth, Max Meuer, Nikolas Gritsch, Constantin Eichenberg, Patrick Schramowski, Matthias Aßenmacher, Kristian Kersting
Large Language Models (LLMs) have reshaped natural language processing with their impressive capabilities.
1 code implementation • 21 Sep 2023 • Stefanie Urchs, Veronika Thurner, Matthias Aßenmacher, Christian Heumann, Stephanie Thiemichen
With the introduction of ChatGPT, OpenAI made large language models (LLM) accessible to users with limited IT expertise.
no code implementations • 18 Aug 2023 • Philipp Koch, Gilary Vera Nuñez, Esteban Garces Arias, Christian Heumann, Matthias Schöffel, Alexander Häberlin, Matthias Aßenmacher
This dictionary entails record cards referring to lemmas in medieval Latin, a low-resource language.
1 code implementation • 31 Jul 2023 • Matthias Aßenmacher, Nadja Sauter, Christian Heumann
We explore the potential of domain transfer across geographical locations, languages, time, and genre in a large-scale database of political manifestos.
1 code implementation • 14 Jul 2023 • Ibrahim Tolga Öztürk, Rostislav Nedelchev, Christian Heumann, Esteban Garces Arias, Marius Roger, Bernd Bischl, Matthias Aßenmacher
Recent studies have demonstrated how to assess the stereotypical bias in pre-trained English language models.
1 code implementation • 16 Jun 2023 • Lukas Rauch, Matthias Aßenmacher, Denis Huseljic, Moritz Wirth, Bernd Bischl, Bernhard Sick
Deep active learning (DAL) seeks to reduce annotation costs by enabling the model to actively query instance annotations from which it expects to learn the most.
1 code implementation • 12 Jan 2023 • Cem Akkus, Luyang Chu, Vladana Djakovic, Steffen Jauch-Walser, Philipp Koch, Giacomo Loss, Christopher Marquardt, Marco Moldovan, Nadja Sauter, Maximilian Schneider, Rickmer Schulte, Karol Urbanczyk, Jann Goschenhofer, Christian Heumann, Rasmus Hvingelby, Daniel Schalk, Matthias Aßenmacher
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually.
no code implementations • 3 Jan 2020 • Matthias Aßenmacher, Christian Heumann
It is not always obvious where these improvements originate from, as it is not possible to completely disentangle the contributions of the three driving forces.