no code implementations • 25 Nov 2021 • Matthias Perkonigg, Johannes Hofmanninger, Christian Herold, Helmut Prosch, Georg Langs
Here, we propose a method for continual active learning operating on a stream of medical images in a multi-scanner setting.
no code implementations • 15 Nov 2021 • Matthias Perkonigg, Peter Mesenbrink, Alexander Goehler, Miljen Martic, Ahmed Ba-Ssalamah, Georg Langs
In multi-center randomized clinical trials imaging data can be diverse due to acquisition technology or scanning protocols.
no code implementations • 7 Jun 2021 • Matthias Perkonigg, Johannes Hofmanninger, Georg Langs
Continual learning can adapt to a continuous data stream of a changing imaging environment.
no code implementations • 6 Jul 2020 • Johannes Hofmanninger, Matthias Perkonigg, James A. Brink, Oleg Pianykh, Christian Herold, Georg Langs
In medical imaging, technical progress or changes in diagnostic procedures lead to a continuous change in image appearance.
no code implementations • 31 Jan 2020 • Matthias Perkonigg, Daniel Sobotka, Ahmed Ba-Ssalamah, Georg Langs
Predictive marker patterns in imaging data are a means to quantify disease and progression, but their identification is challenging, if the underlying biology is poorly understood.
1 code implementation • 17 Jan 2020 • A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, Bora Baydar, Dmitry Lachinov, Shuo Han, Josef Pauli, Fabian Isensee, Matthias Perkonigg, Rachana Sathish, Ronnie Rajan, Debdoot Sheet, Gurbandurdy Dovletov, Oliver Speck, Andreas Nürnberger, Klaus H. Maier-Hein, Gözde BOZDAĞI AKAR, Gözde Ünal, Oğuz Dicle, M. Alper Selver
The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance (DICE: 0. 98 $\pm$ 0. 00 / 0. 95 $\pm$ 0. 01) but the best MSSD performance remain limited (21. 89 $\pm$ 13. 94 / 20. 85 $\pm$ 10. 63 mm).