no code implementations • BigScience (ACL) 2022 • Jason Fries, Natasha Seelam, Gabriel Altay, Leon Weber, Myungsun Kang, Debajyoti Datta, Ruisi Su, Samuele Garda, Bo wang, Simon Ott, Matthias Samwald, Wojciech Kusa
Large-scale language modeling and natural language prompting have demonstrated exciting capabilities for few and zero shot learning in NLP.
no code implementations • 4 May 2023 • Konstantin Hebenstreit, Robert Praas, Louis P Kiesewetter, Matthias Samwald
Emergent chain-of-thought (CoT) reasoning capabilities promise to improve performance and explainability of large language models (LLMs).
no code implementations • 30 Mar 2023 • Milad Moradi, Ke Yan, David Colwell, Matthias Samwald, Rhona Asgari
The experimentations on various object detection datasets and models showed that BODEM can be effectively used to explain the behavior of object detectors and reveal their vulnerabilities.
no code implementations • 15 Mar 2023 • Hoda Memarzadeh, Nasser Ghadiri, Matthias Samwald, Maryam Lotfi Shahreza
Considering that most of the clinical concepts are in the form of multi-word expressions and their accurate identification requires the user to specify n-gram range, we have proposed a shortcut method to preserve the structure of the expression based on TF-IDF.
1 code implementation • 27 Jan 2023 • Simon Ott, Konstantin Hebenstreit, Valentin Liévin, Christoffer Egeberg Hother, Milad Moradi, Maximilian Mayrhauser, Robert Praas, Ole Winther, Matthias Samwald
Large language models (LLMs) such as GPT-3 and ChatGPT have recently demonstrated impressive results across a wide range of tasks.
2 code implementations • 9 Nov 2022 • BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions.
1 code implementation • 30 Jun 2022 • Jason Alan Fries, Leon Weber, Natasha Seelam, Gabriel Altay, Debajyoti Datta, Samuele Garda, Myungsun Kang, Ruisi Su, Wojciech Kusa, Samuel Cahyawijaya, Fabio Barth, Simon Ott, Matthias Samwald, Stephen Bach, Stella Biderman, Mario Sänger, Bo wang, Alison Callahan, Daniel León Periñán, Théo Gigant, Patrick Haller, Jenny Chim, Jose David Posada, John Michael Giorgi, Karthik Rangasai Sivaraman, Marc Pàmies, Marianna Nezhurina, Robert Martin, Michael Cullan, Moritz Freidank, Nathan Dahlberg, Shubhanshu Mishra, Shamik Bose, Nicholas Michio Broad, Yanis Labrak, Shlok S Deshmukh, Sid Kiblawi, Ayush Singh, Minh Chien Vu, Trishala Neeraj, Jonas Golde, Albert Villanova del Moral, Benjamin Beilharz
Training and evaluating language models increasingly requires the construction of meta-datasets --diverse collections of curated data with clear provenance.
1 code implementation • nlppower (ACL) 2022 • Kathrin Blagec, Georg Dorffner, Milad Moradi, Simon Ott, Matthias Samwald
Our results suggest that the large majority of natural language processing metrics currently used have properties that may result in an inadequate reflection of a models' performance.
no code implementations • 9 Mar 2022 • Simon Ott, Adriano Barbosa-Silva, Kathrin Blagec, Jan Brauner, Matthias Samwald
Benchmarks are crucial to measuring and steering progress in artificial intelligence (AI).
no code implementations • 25 Feb 2022 • Milad Moradi, Matthias Samwald
In this article, we first give an introduction to artificial intelligence and its applications in biology and medicine in Section 1.
no code implementations • 18 Jan 2022 • Kathrin Blagec, Jakob Kraiger, Wolfgang Frühwirt, Matthias Samwald
Furthermore, there is a lack of systematized meta-information that allows clinical AI researchers to quickly determine accessibility, scope, content and other characteristics of datasets and benchmark datasets relevant to the clinical domain.
1 code implementation • 16 Nov 2021 • Milad Moradi, Matthias Samwald
Experimental results showed that the biomedical NLP models are sensitive to adversarial samples; their performance dropped in average by 21 and 18. 9 absolute percent on character-level and word-level adversarial noise, respectively.
1 code implementation • 4 Oct 2021 • Kathrin Blagec, Adriano Barbosa-Silva, Simon Ott, Matthias Samwald
Research in artificial intelligence (AI) is addressing a growing number of tasks through a rapidly growing number of models and methodologies.
1 code implementation • 1 Oct 2021 • Kathrin Blagec, Hong Xu, Asan Agibetov, Matthias Samwald
BACKGROUND: In this study, we investigated the efficacy of current state-of-the-art neural sentence embedding models for semantic similarity estimation of sentences from biomedical literature.
Ranked #1 on
Sentence Embeddings For Biomedical Texts
on BIOSSES
1 code implementation • AKBC 2021 • Simon Ott, Christian Meilicke, Matthias Samwald
SAFRAN yields new state-of-the-art results for fully interpretable link prediction on the established general-purpose benchmarks FB15K-237, WN18RR and YAGO3-10.
Ranked #4 on
Link Prediction
on FB15k-237
1 code implementation • 6 Sep 2021 • Milad Moradi, Kathrin Blagec, Florian Haberl, Matthias Samwald
However, in-domain pretraining seems not to be sufficient; novel pretraining and few-shot learning strategies are required in the biomedical NLP domain.
1 code implementation • EMNLP 2021 • Milad Moradi, Matthias Samwald
High-performance neural language models have obtained state-of-the-art results on a wide range of Natural Language Processing (NLP) tasks.
1 code implementation • 27 Aug 2021 • Milad Moradi, Kathrin Blagec, Matthias Samwald
The proposed perturbation methods can be used in performance evaluation tests to assess how robustly clinical NLP models can operate on noisy data, in real-world settings.
1 code implementation • 29 Apr 2021 • Hoda Memarzadeh, Nasser Ghadiri, Matthias Samwald, Maryam Lotfi Shahreza
To address the limitations of previous approaches in handling complex parts of EMR data, an unsupervised method is proposed for building a patient representation, which integrates unstructured data with structured data extracted from patients' EMRs.
1 code implementation • 20 Dec 2020 • Milad Moradi, Matthias Samwald
Confident itemsets discover how biomedical concepts are related to class labels in the black-box's decision space.
1 code implementation • 10 Dec 2020 • Simon Ott, Laura Graf, Asan Agibetov, Christian Meilicke, Matthias Samwald
SAFRAN yields new state-of-the-art results for fully interpretable link prediction on the established general-purpose benchmark FB15K-237 and the large-scale biomedical benchmark OpenBioLink.
no code implementations • 21 Oct 2020 • Milad Moradi, Matthias Samwald
In this paper, we introduce a post-hoc explanation method that utilizes confident itemsets to approximate the behavior of black-box classifiers for medical information extraction.
no code implementations • 6 Aug 2020 • Kathrin Blagec, Georg Dorffner, Milad Moradi, Matthias Samwald
Our results suggest that the large majority of metrics currently used have properties that may result in an inadequate reflection of a models' performance.
1 code implementation • 15 May 2020 • Asan Agibetov, Matthias Samwald
Recently, link prediction algorithms based on neural embeddings have gained tremendous popularity in the Semantic Web community, and are extensively used for knowledge graph completion.
no code implementations • 5 May 2020 • Milad Moradi, Matthias Samwald
We introduce confident itemsets, a set of feature values that are highly correlated to a specific class label.
1 code implementation • 25 Feb 2020 • Ernesto Jiménez-Ruiz, Asan Agibetov, Jiaoyan Chen, Matthias Samwald, Valerie Cross
Large ontologies still pose serious challenges to state-of-the-art ontology alignment systems.
1 code implementation • 10 Dec 2019 • Anna Breit, Simon Ott, Asan Agibetov, Matthias Samwald
SUMMARY: Recently, novel machine-learning algorithms have shown potential for predicting undiscovered links in biomedical knowledge networks.
1 code implementation • 6 Aug 2019 • Milad Moradi, Matthias Samwald
In recent years, summarizers that incorporate domain knowledge into the process of text summarization have outperformed generic methods, especially for summarization of biomedical texts.
no code implementations • 27 Jul 2018 • Asan Agibetov, Matthias Samwald
We focus our attention on the link prediction problem for knowledge graphs, which is treated herein as a binary classification task on neural embeddings of the entities.
1 code implementation • 31 May 2018 • Ernesto Jimenez-Ruiz, Asan Agibetov, Matthias Samwald, Valerie Cross
Large ontologies still pose serious challenges to state-of-the-art ontology alignment systems.
no code implementations • 30 Apr 2018 • Asan Agibetov, Matthias Samwald
In this work we address the problem of fast and scalable learning of neuro-symbolic representations for general biological knowledge.
no code implementations • 12 Feb 2015 • Jose Antonio Miñarro-Giménez, Oscar Marín-Alonso, Matthias Samwald
We found that the ranking and retrieved results generated by word2vec were not of sufficient quality for automatic population of knowledge bases and ontologies, but could serve as a starting point for further manual curation.