no code implementations • 17 Oct 2023 • Priyanka Vasanthakumari, Thomas Brettin, Yitan Zhu, Hyunseung Yoo, Maulik Shukla, Alexander Partin, Fangfang Xia, Oleksandr Narykov, Rick L. Stevens
Several error analysis metrics such as the false positive rate (FPR), and the prediction uncertainty are evaluated, and the results are summarized by cancer type and drug mechanism of action (MoA) category.
no code implementations • 6 Oct 2023 • Shuaiwen Leon Song, Bonnie Kruft, Minjia Zhang, Conglong Li, Shiyang Chen, Chengming Zhang, Masahiro Tanaka, Xiaoxia Wu, Jeff Rasley, Ammar Ahmad Awan, Connor Holmes, Martin Cai, Adam Ghanem, Zhongzhu Zhou, Yuxiong He, Pete Luferenko, Divya Kumar, Jonathan Weyn, Ruixiong Zhang, Sylwester Klocek, Volodymyr Vragov, Mohammed AlQuraishi, Gustaf Ahdritz, Christina Floristean, Cristina Negri, Rao Kotamarthi, Venkatram Vishwanath, Arvind Ramanathan, Sam Foreman, Kyle Hippe, Troy Arcomano, Romit Maulik, Maxim Zvyagin, Alexander Brace, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Zhen Xie, Diangen Lin, Maulik Shukla, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Prasanna Balaprakash, Gina Tourassi, John Gounley, Heidi Hanson, Thomas E Potok, Massimiliano Lupo Pasini, Kate Evans, Dan Lu, Dalton Lunga, Junqi Yin, Sajal Dash, Feiyi Wang, Mallikarjun Shankar, Isaac Lyngaas, Xiao Wang, Guojing Cong, Pei Zhang, Ming Fan, Siyan Liu, Adolfy Hoisie, Shinjae Yoo, Yihui Ren, William Tang, Kyle Felker, Alexey Svyatkovskiy, Hang Liu, Ashwin Aji, Angela Dalton, Michael Schulte, Karl Schulz, Yuntian Deng, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Anima Anandkumar, Rick Stevens
In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences.
1 code implementation • 25 Apr 2022 • Alexander Partin, Thomas Brettin, Yitan Zhu, James M. Dolezal, Sara Kochanny, Alexander T. Pearson, Maulik Shukla, Yvonne A. Evrard, James H. Doroshow, Rick L. Stevens
Prediction performance of three unimodal NNs which use GE are compared to assess the contribution of data augmentation methods.
1 code implementation • Scientific Reports 2021 • Yitan Zhu, Thomas Brettin, Fangfang Xia, Alexander Partin, Maulik Shukla, Hyunseung Yoo, Yvonne A. Evrard, James H. Doroshow, Rick L. Stevens
Convolutional neural networks (CNNs) have been successfully used in many applications where important information about data is embedded in the order of features, such as speech and imaging.
no code implementations • 18 Apr 2021 • Fangfang Xia, Jonathan Allen, Prasanna Balaprakash, Thomas Brettin, Cristina Garcia-Cardona, Austin Clyde, Judith Cohn, James Doroshow, Xiaotian Duan, Veronika Dubinkina, Yvonne Evrard, Ya Ju Fan, Jason Gans, Stewart He, Pinyi Lu, Sergei Maslov, Alexander Partin, Maulik Shukla, Eric Stahlberg, Justin M. Wozniak, Hyunseung Yoo, George Zaki, Yitan Zhu, Rick Stevens
To provide a more rigorous assessment of model generalizability between different studies, we use machine learning to analyze five publicly available cell line-based data sets: NCI60, CTRP, GDSC, CCLE and gCSI.
1 code implementation • 25 Nov 2020 • Alexander Partin, Thomas Brettin, Yvonne A. Evrard, Yitan Zhu, Hyunseung Yoo, Fangfang Xia, Songhao Jiang, Austin Clyde, Maulik Shukla, Michael Fonstein, James H. Doroshow, Rick Stevens
In contrast, a GBDT with hyperparameter tuning exhibits superior performance as compared with both NNs at the lower range of training sizes for two of the datasets, whereas the mNN performs better at the higher range of training sizes.
no code implementations • 13 May 2020 • Yitan Zhu, Thomas Brettin, Yvonne A. Evrard, Alexander Partin, Fangfang Xia, Maulik Shukla, Hyunseung Yoo, James H. Doroshow, Rick Stevens
Previous transfer learning studies for drug response prediction focused on building models that predict the response of tumor cells to a specific drug treatment.