no code implementations • 15 Feb 2023 • Ben Zandonati, Glenn Bucagu, Adrian Alan Pol, Maurizio Pierini, Olya Sirkin, Tal Kopetz
Compression of deep neural networks has become a necessary stage for optimizing model inference on resource-constrained hardware.
1 code implementation • 25 Jan 2023 • Kinga Anna Woźniak, Vasilis Belis, Ema Puljak, Panagiotis Barkoutsos, Günther Dissertori, Michele Grossi, Maurizio Pierini, Florentin Reiter, Ivano Tavernelli, Sofia Vallecorsa
The designed quantum anomaly detection models, namely an unsupervised kernel machine and two clustering algorithms, are trained to find new-physics events in the latent representation of LHC data produced by the autoencoder.
no code implementations • 25 Jan 2023 • Julian Schuhmacher, Laura Boggia, Vasilis Belis, Ema Puljak, Michele Grossi, Maurizio Pierini, Sofia Vallecorsa, Francesco Tacchino, Panagiotis Barkoutsos, Ivano Tavernelli
Much hope for finding new physics phenomena at microscopic scale relies on the observations obtained from High Energy Physics experiments, like the ones performed at the Large Hadron Collider (LHC).
1 code implementation • 18 Nov 2022 • Raghav Kansal, Anni Li, Javier Duarte, Nadezda Chernyavskaya, Maurizio Pierini, Breno Orzari, Thiago Tomei
There has been a recent explosion in research into machine-learning-based generative modeling to tackle computational challenges for simulations in high energy physics (HEP).
no code implementations • 16 Oct 2022 • Ben Zandonati, Adrian Alan Pol, Maurizio Pierini, Olya Sirkin, Tal Kopetz
This response is non-linear and heterogeneous throughout the network.
1 code implementation • 28 Sep 2022 • Zhiqiang Que, Hongxiang Fan, Marcus Loo, Michaela Blott, Maurizio Pierini, Alexander D Tapper, Wayne Luk
In addition, we introduce an outer-product based matrix multiplication approach which is enhanced by the strength reduction for low latency design.
no code implementations • 16 May 2022 • Nicolò Ghielmetti, Vladimir Loncar, Maurizio Pierini, Marcel Roed, Sioni Summers, Thea Aarrestad, Christoffer Petersson, Hampus Linander, Jennifer Ngadiuba, Kelvin Lin, Philip Harris
In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators for real-time semantic segmentation tasks relevant for autonomous driving.
no code implementations • 5 Apr 2022 • Marco Letizia, Gianvito Losapio, Marco Rando, Gaia Grosso, Andrea Wulzer, Maurizio Pierini, Marco Zanetti, Lorenzo Rosasco
We present a machine learning approach for model-independent new physics searches.
no code implementations • 4 Apr 2022 • Shah Rukh Qasim, Nadezda Chernyavskaya, Jan Kieseler, Kenneth Long, Oleksandr Viazlo, Maurizio Pierini, Raheel Nawaz
We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in next-generation granular calorimeters similar to that foreseen for the high-luminosity upgrade of the CMS detector.
no code implementations • 1 Mar 2022 • Joosep Pata, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone
The standard particle flow algorithm reconstructs stable particles based on calorimeter clusters and tracks to provide a global event reconstruction that exploits the combined information of multiple detector subsystems, leading to strong improvements for quantities such as jets and missing transverse energy.
no code implementations • 1 Mar 2022 • Mary Touranakou, Nadezda Chernyavskaya, Javier Duarte, Dimitrios Gunopulos, Raghav Kansal, Breno Orzari, Maurizio Pierini, Thiago Tomei, Jean-Roch Vlimant
We study how to use Deep Variational Autoencoders for a fast simulation of jets of particles at the LHC.
no code implementations • 9 Feb 2022 • Adrian Alan Pol, Thea Aarrestad, Ekaterina Govorkova, Roi Halily, Anat Klempner, Tal Kopetz, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Olya Sirkin, Sioni Summers
We experiment with 8-bit and ternary quantization, benchmarking their accuracy and inference latency against a single-precision floating-point.
no code implementations • 6 Dec 2021 • Florencia Canelli, Annapaola De Cosa, Luc Le Pottier, Jeremi Niedziela, Kevin Pedro, Maurizio Pierini
The experimental signature is characterised by the presence of reconstructed missing momentum collinear with the visible components of the jets.
2 code implementations • 24 Nov 2021 • Farouk Mokhtar, Raghav Kansal, Daniel Diaz, Javier Duarte, Joosep Pata, Maurizio Pierini, Jean-Roch Vlimant
The particle-flow (PF) algorithm is used in general-purpose particle detectors to reconstruct a comprehensive particle-level view of the collision by combining information from different subdetectors.
1 code implementation • 24 Nov 2021 • Steven Tsan, Raghav Kansal, Anthony Aportela, Daniel Diaz, Javier Duarte, Sukanya Krishna, Farouk Mokhtar, Jean-Roch Vlimant, Maurizio Pierini
We explore the use of graph-based autoencoders, which operate on jets in their "particle cloud" representations and can leverage the interdependencies among the particles within a jet, for such tasks.
no code implementations • 25 Oct 2021 • Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, ASHISH SHARMA, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.
no code implementations • 27 Jul 2021 • Eric A. Moreno, Jean-Roch Vlimant, Maria Spiropulu, Bartlomiej Borzyszkowski, Maurizio Pierini
The recurrent autoencoder outperforms other autoencoders based on different architectures.
1 code implementation • 26 Jun 2021 • Zhiqiang Que, Erwei Wang, Umar Marikar, Eric Moreno, Jennifer Ngadiuba, Hamza Javed, Bartłomiej Borzyszkowski, Thea Aarrestad, Vladimir Loncar, Sioni Summers, Maurizio Pierini, Peter Y Cheung, Wayne Luk
The proposed approach has been evaluated based on two LSTM models, targeting a ZYNQ 7045 FPGA and a U250 FPGA.
2 code implementations • NeurIPS 2021 • Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Jean-Roch Vlimant, Dimitrios Gunopulos
We propose JetNet as a novel point-cloud-style dataset for the ML community to experiment with, and set MPGAN as a benchmark to improve upon for future generative models.
no code implementations • 4 May 2021 • Giuseppe Di Guglielmo, Farah Fahim, Christian Herwig, Manuel Blanco Valentin, Javier Duarte, Cristian Gingu, Philip Harris, James Hirschauer, Martin Kwok, Vladimir Loncar, Yingyi Luo, Llovizna Miranda, Jennifer Ngadiuba, Daniel Noonan, Seda Ogrenci-Memik, Maurizio Pierini, Sioni Summers, Nhan Tran
We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile.
2 code implementations • 9 Mar 2021 • Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo Jindariani, Nhan Tran, Luca P. Carloni, Giuseppe Di Guglielmo, Philip Harris, Jeffrey Krupa, Dylan Rankin, Manuel Blanco Valentin, Josiah Hester, Yingyi Luo, John Mamish, Seda Orgrenci-Memik, Thea Aarrestad, Hamza Javed, Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol, Sioni Summers, Javier Duarte, Scott Hauck, Shih-Chieh Hsu, Jennifer Ngadiuba, Mia Liu, Duc Hoang, Edward Kreinar, Zhenbin Wu
Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains.
1 code implementation • 21 Jan 2021 • Joosep Pata, Javier Duarte, Jean-Roch Vlimant, Maurizio Pierini, Maria Spiropulu
In general-purpose particle detectors, the particle-flow algorithm may be used to reconstruct a comprehensive particle-level view of the event by combining information from the calorimeters and the trackers, significantly improving the detector resolution for jets and the missing transverse momentum.
2 code implementations • 13 Jan 2021 • Thea Aarrestad, Vladimir Loncar, Nicolò Ghielmetti, Maurizio Pierini, Sioni Summers, Jennifer Ngadiuba, Christoffer Petersson, Hampus Linander, Yutaro Iiyama, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Kevin Pedro, Nhan Tran, Mia Liu, Edward Kreinar, Zhenbin Wu, Duc Hoang
We introduce an automated tool for deploying ultra low-latency, low-power deep neural networks with convolutional layers on FPGAs.
no code implementations • 30 Nov 2020 • Aneesh Heintz, Vesal Razavimaleki, Javier Duarte, Gage DeZoort, Isobel Ojalvo, Savannah Thais, Markus Atkinson, Mark Neubauer, Lindsey Gray, Sergo Jindariani, Nhan Tran, Philip Harris, Dylan Rankin, Thea Aarrestad, Vladimir Loncar, Maurizio Pierini, Sioni Summers, Jennifer Ngadiuba, Mia Liu, Edward Kreinar, Zhenbin Wu
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
2 code implementations • 30 Nov 2020 • Raghav Kansal, Javier Duarte, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Jean-Roch Vlimant, Dimitrios Gunopulos
We develop a graph generative adversarial network to generate sparse data sets like those produced at the CERN Large Hadron Collider (LHC).
no code implementations • 12 Oct 2020 • Adrian Alan Pol, Victor Berger, Gianluca Cerminara, Cecile Germain, Maurizio Pierini
Exploiting the rapid advances in probabilistic inference, in particular variational Bayes and variational autoencoders (VAEs), for anomaly detection (AD) tasks remains an open research question.
no code implementations • 5 Oct 2020 • Cheng Chen, Olmo Cerri, Thong Q. Nguyen, Jean-Roch Vlimant, Maurizio Pierini
We present a fast simulation application based on a Deep Neural Network, designed to create large analysis-specific datasets.
no code implementations • 8 Aug 2020 • Yutaro Iiyama, Gianluca Cerminara, Abhijay Gupta, Jan Kieseler, Vladimir Loncar, Maurizio Pierini, Shah Rukh Qasim, Marcel Rieger, Sioni Summers, Gerrit Van Onsem, Kinga Wozniak, Jennifer Ngadiuba, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Mia Liu, Kevin Pedro, Nhan Tran, Edward Kreinar, Zhenbin Wu
Graph neural networks have been shown to achieve excellent performance for several crucial tasks in particle physics, such as charged particle tracking, jet tagging, and clustering.
3 code implementations • 15 Jun 2020 • Claudionor N. Coelho Jr., Aki Kuusela, Shan Li, Hao Zhuang, Thea Aarrestad, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Adrian Alan Pol, Sioni Summers
Although the quest for more accurate solutions is pushing deep learning research towards larger and more complex algorithms, edge devices demand efficient inference and therefore reduction in model size, latency and energy consumption.
1 code implementation • 4 May 2020 • Oliver Knapp, Guenther Dissertori, Olmo Cerri, Thong Q. Nguyen, Jean-Roch Vlimant, Maurizio Pierini
We apply an Adversarially Learned Anomaly Detection (ALAD) algorithm to the problem of detecting new physics processes in proton-proton collisions at the Large Hadron Collider.
2 code implementations • 11 Mar 2020 • Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Duc Hoang, Sergo Jindariani, Edward Kreinar, Mia Liu, Vladimir Loncar, Jennifer Ngadiuba, Kevin Pedro, Maurizio Pierini, Dylan Rankin, Sheila Sagear, Sioni Summers, Nhan Tran, Zhenbin Wu
We discuss the trade-off between model accuracy and resource consumption.
3 code implementations • 5 Feb 2020 • Sioni Summers, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Duc Hoang, Sergo Jindariani, Edward Kreinar, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Dylan Rankin, Nhan Tran, Zhenbin Wu
We describe the implementation of Boosted Decision Trees in the hls4ml library, which allows the translation of a trained model into FPGA firmware through an automated conversion process.
1 code implementation • 27 Dec 2019 • Raffaele Tito D'Agnolo, Gaia Grosso, Maurizio Pierini, Andrea Wulzer, Marco Zanetti
It is designed to be sensitive to small discrepancies that arise in datasets dominated by the reference model.
High Energy Physics - Phenomenology High Energy Physics - Experiment
no code implementations • 14 Dec 2019 • Dawit Belayneh, Federico Carminati, Amir Farbin, Benjamin Hooberman, Gulrukh Khattak, Miaoyuan Liu, Junze Liu, Dominick Olivito, Vitória Barin Pacela, Maurizio Pierini, Alexander Schwing, Maria Spiropulu, Sofia Vallecorsa, Jean-Roch Vlimant, Wei Wei, Matt Zhang
These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.
1 code implementation • 8 Nov 2019 • Andrea Coccaro, Maurizio Pierini, Luca Silvestrini, Riccardo Torre
We introduce the DNNLikelihood, a novel framework to easily encode, through Deep Neural Networks (DNN), the full experimental information contained in complicated likelihood functions (LFs).
High Energy Physics - Phenomenology Cosmology and Nongalactic Astrophysics High Energy Physics - Experiment Data Analysis, Statistics and Probability
1 code implementation • 30 Oct 2019 • Jorge de Blas, Debtosh Chowdhury, Marco Ciuchini, Antonio M. Coutinho, Otto Eberhardt, Marco Fedele, Enrico Franco, Giovanni Grilli di Cortona, Victor Miralles, Satoshi Mishima, Ayan Paul, Ana Penuelas, Maurizio Pierini, Laura Reina, Luca Silvestrini, Mauro Valli, Ryoutaro Watanabe, Norimi Yokozaki
$\texttt{HEPfit}$ is a flexible open-source tool which, given the Standard Model or any of its extensions, allows to $\textit{i)}$ fit the model parameters to a given set of experimental observables; $\textit{ii)}$ obtain predictions for observables.
High Energy Physics - Phenomenology High Energy Physics - Experiment
3 code implementations • 26 Sep 2019 • Eric A. Moreno, Thong Q. Nguyen, Jean-Roch Vlimant, Olmo Cerri, Harvey B. Newman, Avikar Periwal, Maria Spiropulu, Javier M. Duarte, Maurizio Pierini
We develop a jet identification algorithm based on an interaction network, designed to identify high-momentum Higgs bosons decaying to bottom quark-antiquark pairs, distinguish them from ordinary jets originating from the hadronization of quarks and gluons.
High Energy Physics - Experiment High Energy Physics - Phenomenology
2 code implementations • 14 Aug 2019 • Eric A. Moreno, Olmo Cerri, Javier M. Duarte, Harvey B. Newman, Thong Q. Nguyen, Avikar Periwal, Maurizio Pierini, Aidana Serikova, Maria Spiropulu, Jean-Roch Vlimant
We investigate the performance of a jet identification algorithm based on interaction networks (JEDI-net) to identify all-hadronic decays of high-momentum heavy particles produced at the LHC and distinguish them from ordinary jets originating from the hadronization of quarks and gluons.
High Energy Physics - Experiment High Energy Physics - Phenomenology
1 code implementation • 18 Apr 2019 • Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan, Benjamin Kreis, Brian Lee, Mia Liu, Vladimir Lončar, Jennifer Ngadiuba, Kevin Pedro, Brandon Perez, Maurizio Pierini, Dylan Rankin, Nhan Tran, Matthew Trahms, Aristeidis Tsaris, Colin Versteeg, Ted W. Way, Dustin Werran, Zhenbin Wu
New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains.
Data Analysis, Statistics and Probability High Energy Physics - Experiment Computational Physics Instrumentation and Detectors
3 code implementations • 21 Feb 2019 • Shah Rukh Qasim, Jan Kieseler, Yutaro Iiyama, Maurizio Pierini
We explore the use of graph networks to deal with irregular-geometry detectors in the context of particle reconstruction.
1 code implementation • 16 Jan 2019 • Bobak Hashemi, Nick Amin, Kaustuv Datta, Dominick Olivito, Maurizio Pierini
Using generative adversarial networks (GANs), we investigate the possibility of creating large amounts of analysis-specific simulated LHC events at limited computing cost.
1 code implementation • 26 Nov 2018 • Olmo Cerri, Thong Q. Nguyen, Maurizio Pierini, Maria Spiropulu, Jean-Roch Vlimant
Using variational autoencoders trained on known physics processes, we develop a one-sided threshold test to isolate previously unseen processes as outlier events.
no code implementations • 18 Oct 2018 • Jesus Arjona Martinez, Olmo Cerri, Maurizio Pierini, Maria Spiropulu, Jean-Roch Vlimant
At the Large Hadron Collider, the high transverse-momentum events studied by experimental collaborations occur in coincidence with parasitic low transverse-momentum collisions, usually referred to as pileup.
1 code implementation • 27 Jul 2018 • Adrian Alan Pol, Gianluca Cerminara, Cecile Germain, Maurizio Pierini, Agrima Seth
Reliable data quality monitoring is a key asset in delivering collision data suitable for physics analysis in any modern large-scale High Energy Physics experiment.
3 code implementations • 29 Jun 2018 • Thong Q. Nguyen, Daniel Weitekamp III, Dustin Anderson, Roberto Castello, Olmo Cerri, Maurizio Pierini, Maria Spiropulu, Jean-Roch Vlimant
We show how event topology classification based on deep learning could be used to improve the purity of data samples selected in real time at at the Large Hadron Collider.
2 code implementations • 16 Apr 2018 • Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan Rivera, Nhan Tran, Zhenbin Wu
For our example jet substructure model, we fit well within the available resources of modern FPGAs with a latency on the scale of 100 ns.