1 code implementation • 26 Apr 2023 • Ishaan Bhat, Josien P. W. Pluim, Max A. Viergever, Hugo J. Kuijf
We propose the Generalized Probabilistic U-Net, which extends the Probabilistic U-Net by allowing more general forms of the Gaussian distribution as the latent space distribution that can better approximate the uncertainty in the reference segmentations.
1 code implementation • 22 Jun 2022 • Ishaan Bhat, Josien P. W. Pluim, Max A. Viergever, Hugo J. Kuijf
We study the role played by features computed from neural network uncertainty estimates and shape-based features computed from binary predictions in reducing false positives in liver lesion detection by developing a classification-based post-processing step for different uncertainty estimation methods.
no code implementations • 24 May 2022 • Sanne G. M. van Velzen, Bob D. de Vos, Julia M. H. Noothout, Helena M. Verkooijen, Max A. Viergever, Ivana Išgum
Interscan reproducibility was compared to clinical calcium scoring in radiotherapy treatment planning CTs of 1, 662 patients, each having two scans.
no code implementations • 22 Jul 2021 • Bas H. M. van der Velden, Hugo J. Kuijf, Kenneth G. A. Gilhuijs, Max A. Viergever
With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis.
no code implementations • 10 Aug 2020 • Steffen Bruns, Jelmer M. Wolterink, Richard A. P. Takx, Robbert W. van Hamersvelt, Dominika Suchá, Max A. Viergever, Tim Leiner, Ivana Išgum
Deep learning-based whole-heart segmentation in coronary CT angiography (CCTA) allows the extraction of quantitative imaging measures for cardiovascular risk prediction.
no code implementations • 10 Jul 2020 • Julia M. H. Noothout, Bob D. de Vos, Jelmer M. Wolterink, Elbrich M. Postma, Paul A. M. Smeets, Richard A. P. Takx, Tim Leiner, Max A. Viergever, Ivana Išgum
Global landmark locations are obtained by averaging the predicted displacement vectors, where the contribution of each displacement vector is weighted by the posterior classification probability of the patch that it is pointing from.
no code implementations • 10 Nov 2019 • Majd Zreik, Tim Leiner, Nadieh Khalili, Robbert W. van Hamersvelt, Jelmer M. Wolterink, Michiel Voskuil, Max A. Viergever, Ivana Išgum
We combine our previous works for the analysis of the complete coronary artery tree and the LV myocardium: Coronary arteries are encoded by two disjoint convolutional autoencoders (CAEs) and the LV myocardium is characterized by a convolutional neural network (CNN) and a CAE.
1 code implementation • 15 Oct 2019 • Mariëlle J. A. Jansen, Hugo J. Kuijf, Maarten Niekel, Wouter B. Veldhuis, Frank J. Wessels, Max A. Viergever, Josien P. W. Pluim
Primary tumors have a high likelihood of developing metastases in the liver and early detection of these metastases is crucial for patient outcome.
1 code implementation • 1 Oct 2019 • Samuel St-Jean, Max A. Viergever, Alexander Leemans
Results show that the effect size of the four studied diffusion metrics is preserved while removing variability attributable to the scanner.
1 code implementation • 28 Aug 2019 • Frank Zijlstra, Max A. Viergever, Peter R. Seevinck
This approach was tested on tracking of five 0. 5 mm steel markers in an agarose phantom and on insertion of an MRI-compatible 20 Gauge titanium needle in ex vivo porcine tissue.
1 code implementation • Magnetic resonance in medecine 2019 • Samuel St-Jean, Alberto De Luca, Chantal M. W. Tax, Max A. Viergever, Alexander Leemans
The proposed algorithms herein can estimate both parameters of the noise distribution, are robust to signal leakage artifacts and perform best when used on acquired noise maps.
no code implementations • 11 Jun 2019 • Majd Zreik, Robbert W. van Hamersvelt, Nadieh Khalili, Jelmer M. Wolterink, Michiel Voskuil, Max A. Viergever, Tim Leiner, Ivana Išgum
In patients with obstructive coronary artery disease, the functional significance of a coronary artery stenosis needs to be determined to guide treatment.
1 code implementation • 1 Apr 2019 • Hugo J. Kuijf, J. Matthijs Biesbroek, Jeroen de Bresser, Rutger Heinen, Simon Andermatt, Mariana Bento, Matt Berseth, Mikhail Belyaev, M. Jorge Cardoso, Adrià Casamitjana, D. Louis Collins, Mahsa Dadar, Achilleas Georgiou, Mohsen Ghafoorian, Dakai Jin, April Khademi, Jesse Knight, Hongwei Li, Xavier Lladó, Miguel Luna, Qaiser Mahmood, Richard McKinley, Alireza Mehrtash, Sébastien Ourselin, Bo-yong Park, HyunJin Park, Sang Hyun Park, Simon Pezold, Elodie Puybareau, Leticia Rittner, Carole H. Sudre, Sergi Valverde, Verónica Vilaplana, Roland Wiest, Yongchao Xu, Ziyue Xu, Guodong Zeng, Jian-Guo Zhang, Guoyan Zheng, Christopher Chen, Wiesje van der Flier, Frederik Barkhof, Max A. Viergever, Geert Jan Biessels
Segmentation methods had to be containerized and submitted to the challenge organizers.
1 code implementation • arXiv 2019 • Samuel St-Jean, Maxime Chamberland, Max A. Viergever, Alexander Leemans
In this work, we propose to address the issue of possible misalignment, which might be present even after resampling, by realigning the representative streamline of each subject in this 1D space with a new method, coined diffusion profile realignment (DPR).
no code implementations • 7 Oct 2018 • Jelmer M. Wolterink, Robbert W. van Hamersvelt, Max A. Viergever, Tim Leiner, Ivana Išgum
Evaluation using 24 test images of the CAT08 challenge showed that extracted centerlines had an average overlap of 93. 7% with 96 manually annotated reference centerlines.
no code implementations • 4 Oct 2018 • Sanne G. M. van Velzen, Majd Zreik, Nikolas Lessmann, Max A. Viergever, Pim A. de Jong, Helena M. Verkooijen, Ivana Išgum
Chest CT scans made in lung cancer screening are suitable for identification of participants at risk of CVD.
no code implementations • 17 Sep 2018 • Bob D. de Vos, Floris F. Berendsen, Max A. Viergever, Hessam Sokooti, Marius Staring, Ivana Isgum
To circumvent the need for predefined examples, and thereby to increase convenience of training ConvNets for image registration, we propose the Deep Learning Image Registration (DLIR) framework for \textit{unsupervised} affine and deformable image registration.
2 code implementations • 30 May 2018 • Samuel St-Jean, Alberto De Luca, Max A. Viergever, Alexander Leemans
Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process.
no code implementations • 12 Apr 2018 • Majd Zreik, Robbert W. van Hamersvelt, Jelmer M. Wolterink, Tim Leiner, Max A. Viergever, Ivana Isgum
The results demonstrate that automatic detection and classification of coronary artery plaque and stenosis are feasible.
no code implementations • 8 Dec 2017 • Bob D. de Vos, Nikolas Lessmann, Pim A. de Jong, Max A. Viergever, Ivana Isgum
The results demonstrate that real-time quantification of CAC burden in chest CT without the need for segmentation of CAC is possible.
no code implementations • 24 Nov 2017 • Majd Zreik, Nikolas Lessmann, Robbert W. van Hamersvelt, Jelmer M. Wolterink, Michiel Voskuil, Max A. Viergever, Tim Leiner, Ivana Išgum
To identify patients with a functionally significant coronary artery stenosis, analysis is performed in several stages.
no code implementations • 1 Nov 2017 • Nikolas Lessmann, Bram van Ginneken, Majd Zreik, Pim A. de Jong, Bob D. de Vos, Max A. Viergever, Ivana Išgum
On soft filter reconstructions, the method achieved F1 scores of 0. 89, 0. 89, 0. 67, and 0. 55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively.
no code implementations • 3 Aug 2017 • Jelmer M. Wolterink, Tim Leiner, Max A. Viergever, Ivana Isgum
We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images.
no code implementations • 20 Apr 2017 • Bob D. de Vos, Floris F. Berendsen, Max A. Viergever, Marius Staring, Ivana Išgum
In this work we propose a deep learning network for deformable image registration (DIRNet).
no code implementations • 19 Apr 2017 • Bob D. de Vos, Jelmer M. Wolterink, Pim A. de Jong, Tim Leiner, Max A. Viergever, Ivana Išgum
We propose a method for automatic localization of one or more anatomical structures in 3D medical images through detection of their presence in 2D image slices using a convolutional neural network (ConvNet).
no code implementations • 19 Apr 2017 • Majd Zreik, Tim Leiner, Bob D. de Vos, Robbert W. van Hamersvelt, Max A. Viergever, Ivana Isgum
Subsequently, to obtain the segmentation of the LV, voxel classification is performed within the defined bounding box using a CNN.
no code implementations • 12 Apr 2017 • Jelmer M. Wolterink, Tim Leiner, Max A. Viergever, Ivana Išgum
Ten training and ten test CMR scans cropped to an ROI around the heart were provided in the MICCAI 2016 HVSMR challenge.
no code implementations • 11 Apr 2017 • Pim Moeskops, Max A. Viergever, Adriënne M. Mendrik, Linda S. de Vries, Manon J. N. L. Benders, Ivana Išgum
Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages.
no code implementations • 11 Apr 2017 • Pim Moeskops, Jelmer M. Wolterink, Bas H. M. van der Velden, Kenneth G. A. Gilhuijs, Tim Leiner, Max A. Viergever, Ivana Išgum
The CNN therefore learns to identify the imaging modality, the visualised anatomical structures, and the tissue classes.
no code implementations • 21 Nov 2014 • Mitko Veta, Paul J. van Diest, Stefan M. Willems, Haibo Wang, Anant Madabhushi, Angel Cruz-Roa, Fabio Gonzalez, Anders B. L. Larsen, Jacob S. Vestergaard, Anders B. Dahl, Dan C. Cireşan, Jürgen Schmidhuber, Alessandro Giusti, Luca M. Gambardella, F. Boray Tek, Thomas Walter, Ching-Wei Wang, Satoshi Kondo, Bogdan J. Matuszewski, Frederic Precioso, Violet Snell, Josef Kittler, Teofilo E. de Campos, Adnan M. Khan, Nasir M. Rajpoot, Evdokia Arkoumani, Miangela M. Lacle, Max A. Viergever, Josien P. W. Pluim
The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers.