2 code implementations • 19 Nov 2024 • Laura Ruis, Maximilian Mozes, Juhan Bae, Siddhartha Rao Kamalakara, Dwarak Talupuru, Acyr Locatelli, Robert Kirk, Tim Rocktäschel, Edward Grefenstette, Max Bartolo
We find that, while the models rely on mostly distinct sets of data for each factual question, a document often has a similar influence across different reasoning questions within the same task, indicating the presence of procedural knowledge.
no code implementations • 15 Oct 2024 • Zhengyan Shi, Sander Land, Acyr Locatelli, Matthieu Geist, Max Bartolo
Direct Alignment Algorithms (DAAs), such as Direct Preference Optimisation (DPO) and Identity Preference Optimisation (IPO), have emerged as alternatives to online Reinforcement Learning from Human Feedback (RLHF) algorithms such as Proximal Policy Optimisation (PPO) for aligning language models to human preferences, without the need for explicit reward modelling.
no code implementations • 31 May 2024 • Zihuiwen Ye, Fraser Greenlee-Scott, Max Bartolo, Phil Blunsom, Jon Ander Campos, Matthias Gallé
Reward models (RMs) play a critical role in aligning language models through the process of reinforcement learning from human feedback.
no code implementations • 23 May 2024 • Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh Dash, David Cairuz, Hangyu Lin, Bharat Venkitesh, Madeline Smith, Jon Ander Campos, Yi Chern Tan, Kelly Marchisio, Max Bartolo, Sebastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick Frosst, Aidan Gomez, Phil Blunsom, Marzieh Fadaee, Ahmet Üstün, Sara Hooker
This technical report introduces Aya 23, a family of multilingual language models.
1 code implementation • 8 May 2024 • Sander Land, Max Bartolo
The disconnect between tokenizer creation and model training in language models allows for specific inputs, such as the infamous SolidGoldMagikarp token, to induce unwanted model behaviour.
1 code implementation • 24 Apr 2024 • Hannah Rose Kirk, Alexander Whitefield, Paul Röttger, Andrew Bean, Katerina Margatina, Juan Ciro, Rafael Mosquera, Max Bartolo, Adina Williams, He He, Bertie Vidgen, Scott A. Hale
Human feedback is central to the alignment of Large Language Models (LLMs).
1 code implementation • 18 Apr 2024 • Bertie Vidgen, Adarsh Agrawal, Ahmed M. Ahmed, Victor Akinwande, Namir Al-Nuaimi, Najla Alfaraj, Elie Alhajjar, Lora Aroyo, Trupti Bavalatti, Max Bartolo, Borhane Blili-Hamelin, Kurt Bollacker, Rishi Bomassani, Marisa Ferrara Boston, Siméon Campos, Kal Chakra, Canyu Chen, Cody Coleman, Zacharie Delpierre Coudert, Leon Derczynski, Debojyoti Dutta, Ian Eisenberg, James Ezick, Heather Frase, Brian Fuller, Ram Gandikota, Agasthya Gangavarapu, Ananya Gangavarapu, James Gealy, Rajat Ghosh, James Goel, Usman Gohar, Sujata Goswami, Scott A. Hale, Wiebke Hutiri, Joseph Marvin Imperial, Surgan Jandial, Nick Judd, Felix Juefei-Xu, Foutse khomh, Bhavya Kailkhura, Hannah Rose Kirk, Kevin Klyman, Chris Knotz, Michael Kuchnik, Shachi H. Kumar, Srijan Kumar, Chris Lengerich, Bo Li, Zeyi Liao, Eileen Peters Long, Victor Lu, Sarah Luger, Yifan Mai, Priyanka Mary Mammen, Kelvin Manyeki, Sean McGregor, Virendra Mehta, Shafee Mohammed, Emanuel Moss, Lama Nachman, Dinesh Jinenhally Naganna, Amin Nikanjam, Besmira Nushi, Luis Oala, Iftach Orr, Alicia Parrish, Cigdem Patlak, William Pietri, Forough Poursabzi-Sangdeh, Eleonora Presani, Fabrizio Puletti, Paul Röttger, Saurav Sahay, Tim Santos, Nino Scherrer, Alice Schoenauer Sebag, Patrick Schramowski, Abolfazl Shahbazi, Vin Sharma, Xudong Shen, Vamsi Sistla, Leonard Tang, Davide Testuggine, Vithursan Thangarasa, Elizabeth Anne Watkins, Rebecca Weiss, Chris Welty, Tyler Wilbers, Adina Williams, Carole-Jean Wu, Poonam Yadav, Xianjun Yang, Yi Zeng, Wenhui Zhang, Fedor Zhdanov, Jiacheng Zhu, Percy Liang, Peter Mattson, Joaquin Vanschoren
We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0. 5 benchmark.
1 code implementation • 14 Feb 2024 • Jessica Quaye, Alicia Parrish, Oana Inel, Charvi Rastogi, Hannah Rose Kirk, Minsuk Kahng, Erin Van Liemt, Max Bartolo, Jess Tsang, Justin White, Nathan Clement, Rafael Mosquera, Juan Ciro, Vijay Janapa Reddi, Lora Aroyo
By focusing on ``implicitly adversarial'' prompts (those that trigger T2I models to generate unsafe images for non-obvious reasons), we isolate a set of difficult safety issues that human creativity is well-suited to uncover.
1 code implementation • 9 Feb 2024 • Shivalika Singh, Freddie Vargus, Daniel Dsouza, Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, Mike Zhang, Ramith Hettiarachchi, Joseph Wilson, Marina Machado, Luisa Souza Moura, Dominik Krzemiński, Hakimeh Fadaei, Irem Ergün, Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai, Vu Minh Chien, Sebastian Ruder, Surya Guthikonda, Emad A. Alghamdi, Sebastian Gehrmann, Niklas Muennighoff, Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh Fadaee, Sara Hooker
The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries.
no code implementations • 21 Nov 2023 • Luis Oala, Manil Maskey, Lilith Bat-Leah, Alicia Parrish, Nezihe Merve Gürel, Tzu-Sheng Kuo, Yang Liu, Rotem Dror, Danilo Brajovic, Xiaozhe Yao, Max Bartolo, William A Gaviria Rojas, Ryan Hileman, Rainier Aliment, Michael W. Mahoney, Meg Risdal, Matthew Lease, Wojciech Samek, Debojyoti Dutta, Curtis G Northcutt, Cody Coleman, Braden Hancock, Bernard Koch, Girmaw Abebe Tadesse, Bojan Karlaš, Ahmed Alaa, Adji Bousso Dieng, Natasha Noy, Vijay Janapa Reddi, James Zou, Praveen Paritosh, Mihaela van der Schaar, Kurt Bollacker, Lora Aroyo, Ce Zhang, Joaquin Vanschoren, Isabelle Guyon, Peter Mattson
Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science.
1 code implementation • 28 Sep 2023 • Tom Hosking, Phil Blunsom, Max Bartolo
We critically analyse the use of human feedback for both training and evaluation, to verify whether it fully captures a range of crucial error criteria.
no code implementations • 22 May 2023 • Alicia Parrish, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Max Bartolo, Oana Inel, Juan Ciro, Rafael Mosquera, Addison Howard, Will Cukierski, D. Sculley, Vijay Janapa Reddi, Lora Aroyo
To address this need, we introduce the Adversarial Nibbler challenge.
1 code implementation • NeurIPS 2023 • Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan Karlaš, William Gaviria Rojas, Sudnya Diamos, Greg Diamos, Lynn He, Alicia Parrish, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Douwe Kiela, David Jurado, David Kanter, Rafael Mosquera, Juan Ciro, Lora Aroyo, Bilge Acun, Lingjiao Chen, Mehul Smriti Raje, Max Bartolo, Sabri Eyuboglu, Amirata Ghorbani, Emmett Goodman, Oana Inel, Tariq Kane, Christine R. Kirkpatrick, Tzu-Sheng Kuo, Jonas Mueller, Tristan Thrush, Joaquin Vanschoren, Margaret Warren, Adina Williams, Serena Yeung, Newsha Ardalani, Praveen Paritosh, Lilith Bat-Leah, Ce Zhang, James Zou, Carole-Jean Wu, Cody Coleman, Andrew Ng, Peter Mattson, Vijay Janapa Reddi
Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems.
2 code implementations • CVPR 2022 • Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, Candace Ross
We present a novel task and dataset for evaluating the ability of vision and language models to conduct visio-linguistic compositional reasoning, which we call Winoground.
Ranked #41 on Visual Reasoning on Winoground
1 code implementation • ACL 2022 • Tristan Thrush, Kushal Tirumala, Anmol Gupta, Max Bartolo, Pedro Rodriguez, Tariq Kane, William Gaviria Rojas, Peter Mattson, Adina Williams, Douwe Kiela
We introduce Dynatask: an open source system for setting up custom NLP tasks that aims to greatly lower the technical knowledge and effort required for hosting and evaluating state-of-the-art NLP models, as well as for conducting model in the loop data collection with crowdworkers.
no code implementations • NAACL 2022 • Max Bartolo, Tristan Thrush, Sebastian Riedel, Pontus Stenetorp, Robin Jia, Douwe Kiela
We collect training datasets in twenty experimental settings and perform a detailed analysis of this approach for the task of extractive question answering (QA) for both standard and adversarial data collection.
1 code implementation • EMNLP 2021 • Maximilian Mozes, Max Bartolo, Pontus Stenetorp, Bennett Kleinberg, Lewis D. Griffin
Research shows that natural language processing models are generally considered to be vulnerable to adversarial attacks; but recent work has drawn attention to the issue of validating these adversarial inputs against certain criteria (e. g., the preservation of semantics and grammaticality).
no code implementations • EMNLP 2021 • Max Bartolo, Tristan Thrush, Robin Jia, Sebastian Riedel, Pontus Stenetorp, Douwe Kiela
We further conduct a novel human-in-the-loop evaluation to show that our models are considerably more robust to new human-written adversarial examples: crowdworkers can fool our model only 8. 8% of the time on average, compared to 17. 6% for a model trained without synthetic data.
2 code implementations • ACL 2022 • Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, Pontus Stenetorp
When primed with only a handful of training samples, very large, pretrained language models such as GPT-3 have shown competitive results when compared to fully-supervised, fine-tuned, large, pretrained language models.
no code implementations • NAACL 2021 • Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, Adina Williams
We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking.
no code implementations • Findings of the Association for Computational Linguistics 2020 • Johannes Welbl, Pasquale Minervini, Max Bartolo, Pontus Stenetorp, Sebastian Riedel
Current reading comprehension models generalise well to in-distribution test sets, yet perform poorly on adversarially selected inputs.
1 code implementation • 2 Feb 2020 • Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel, Pontus Stenetorp
We find that training on adversarially collected samples leads to strong generalisation to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop.
Ranked #1 on Reading Comprehension on AdversarialQA (using extra training data)
no code implementations • EMNLP 2018 • Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer Singh, Tim Rocktäschel, Mike Sheldon, Guillaume Bouchard, Sebastian Riedel
This task requires both the interpretation of rules and the application of background knowledge.