Search Results for author: Max Berrendorf

Found 18 papers, 16 papers with code

Approximate Answering of Graph Queries

no code implementations12 Aug 2023 Michael Cochez, Dimitrios Alivanistos, Erik Arakelyan, Max Berrendorf, Daniel Daza, Mikhail Galkin, Pasquale Minervini, Mathias Niepert, Hongyu Ren

We will first provide an overview of the different query types which can be supported by these methods and datasets typically used for evaluation, as well as an insight into their limitations.

Knowledge Graphs World Knowledge

Towards a Holistic View on Argument Quality Prediction

no code implementations19 May 2022 Michael Fromm, Max Berrendorf, Johanna Reiml, Isabelle Mayerhofer, Siddharth Bhargava, Evgeniy Faerman, Thomas Seidl

While there are works on the automated estimation of argument strength, their scope is narrow: they focus on isolated datasets and neglect the interactions with related argument mining tasks, such as argument identification, evidence detection, or emotional appeal.

Argument Mining

A Unified Framework for Rank-based Evaluation Metrics for Link Prediction in Knowledge Graphs

2 code implementations14 Mar 2022 Charles Tapley Hoyt, Max Berrendorf, Mikhail Galkin, Volker Tresp, Benjamin M. Gyori

The link prediction task on knowledge graphs without explicit negative triples in the training data motivates the usage of rank-based metrics.

Benchmarking Knowledge Graph Embedding +2

An Open Challenge for Inductive Link Prediction on Knowledge Graphs

1 code implementation3 Mar 2022 Mikhail Galkin, Max Berrendorf, Charles Tapley Hoyt

An emerging trend in representation learning over knowledge graphs (KGs) moves beyond transductive link prediction tasks over a fixed set of known entities in favor of inductive tasks that imply training on one graph and performing inference over a new graph with unseen entities.

Graph Representation Learning Inductive Link Prediction +1

Improving Inductive Link Prediction Using Hyper-Relational Facts

2 code implementations10 Jul 2021 Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker Tresp, Jens Lehmann

In this work, we classify different inductive settings and study the benefits of employing hyper-relational KGs on a wide range of semi- and fully inductive link prediction tasks powered by recent advancements in graph neural networks.

Inductive Link Prediction Knowledge Graphs

Query Embedding on Hyper-relational Knowledge Graphs

1 code implementation ICLR 2022 Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, Mikhail Galkin

Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.

Knowledge Graphs Link Prediction +2

Diversity Aware Relevance Learning for Argument Search

1 code implementation4 Nov 2020 Michael Fromm, Max Berrendorf, Sandra Obermeier, Thomas Seidl, Evgeniy Faerman

In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects.

Argument Retrieval Clustering +1

A Critical Assessment of State-of-the-Art in Entity Alignment

1 code implementation30 Oct 2020 Max Berrendorf, Ludwig Wacker, Evgeniy Faerman

Therefore, we first carefully examine the benchmarking process and identify several shortcomings, which make the results reported in the original works not always comparable.

Benchmarking Entity Alignment +2

PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings

2 code implementations28 Jul 2020 Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker Tresp, Jens Lehmann

Recently, knowledge graph embeddings (KGEs) received significant attention, and several software libraries have been developed for training and evaluating KGEs.

 Ranked #1 on Link Prediction on WN18 (training time (s) metric)

Knowledge Graph Embedding Knowledge Graph Embeddings +1

On the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link Prediction Methods

1 code implementation17 Feb 2020 Max Berrendorf, Evgeniy Faerman, Laurent Vermue, Volker Tresp

In this work, we take a closer look at the evaluation of two families of methods for enriching information from knowledge graphs: Link Prediction and Entity Alignment.

Entity Alignment Informativeness +2

Unsupervised Anomaly Detection for X-Ray Images

1 code implementation29 Jan 2020 Diana Davletshina, Valentyn Melnychuk, Viet Tran, Hitansh Singla, Max Berrendorf, Evgeniy Faerman, Michael Fromm, Matthias Schubert

Therefore, we adopt state-of-the-art approaches for unsupervised learning to detect anomalies and show how the outputs of these methods can be explained.

Unsupervised Anomaly Detection

Active Learning for Entity Alignment

1 code implementation24 Jan 2020 Max Berrendorf, Evgeniy Faerman, Volker Tresp

In this work, we propose a novel framework for the labeling of entity alignments in knowledge graph datasets.

Active Learning Entity Alignment

Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned

1 code implementation19 Nov 2019 Max Berrendorf, Evgeniy Faerman, Valentyn Melnychuk, Volker Tresp, Thomas Seidl

In this work, we focus on the problem of entity alignment in Knowledge Graphs (KG) and we report on our experiences when applying a Graph Convolutional Network (GCN) based model for this task.

Entity Alignment Knowledge Graphs

Improving Visual Relation Detection using Depth Maps

1 code implementation2 May 2019 Sahand Sharifzadeh, Sina Moayed Baharlou, Max Berrendorf, Rajat Koner, Volker Tresp

We argue that depth maps can additionally provide valuable information on object relations, e. g. helping to detect not only spatial relations, such as standing behind, but also non-spatial relations, such as holding.

Object Relation +2

Cannot find the paper you are looking for? You can Submit a new open access paper.